已问三遍,求学霸解答,谢谢!
2个回答
2014-11-26
展开全部
证明:过P点作PH⊥BC于H,交BD于G,则PFCH为矩形
∴PH//AC,PF=CH
∴∠BPH=∠A
∵BD=AD
∴∠BPD=∠A
∴∠BPD=∠BPH
∴PG=BG
∵∠PGE=∠BGH
∴RT△PGE≌RT△BGH
∴PE=BH
∴PE+PF=BH+HC=BC
∴PH//AC,PF=CH
∴∠BPH=∠A
∵BD=AD
∴∠BPD=∠A
∴∠BPD=∠BPH
∴PG=BG
∵∠PGE=∠BGH
∴RT△PGE≌RT△BGH
∴PE=BH
∴PE+PF=BH+HC=BC
追答
∵BD=AD
∴∠A=∠ADC
又PE⊥BD,PF⊥AD,∠C=90°
容易证明△APF,△ABC和△BPE都相似。
∴PF/AP=BC/AB=PE/BP,设其等于k。则
PE+PF=k(BP+AP)=k(AB)=BC
即无论角A为多少,PE+PF=BC总是成立
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询