(10分)在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为 上点,BC=AF,延长DF与BA的延长线交于E.
(10分)在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为上点,BC=AF,延长DF与BA的延长线交于E.(1)求证△ABD为等腰三角形.(2)求证AC?AF=...
(10分)在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为 上点,BC=AF,延长DF与BA的延长线交于E.(1)求证△ABD为等腰三角形.(2)求证AC?AF=DF?FE.
展开
1个回答
展开全部
(1)证法一:连CF、BF ∠ACD=∠MCD=∠CDB+∠CBD=∠CFB+∠CFD=∠DFB 而∠ACD=∠DFB=∠DAB又∠ACD=∠DBA ∴∠DAB=∠DBA ∴△ABD为等腰三角形 ……(4分) 证法二: 由题意有∠MCD=∠ACD =∠DBA,又∠MCD+∠BCD=∠DAB+∠BCD=180°, ∴∠MCD=∠DAB,∴∠DAB=∠DBA即△.ABD为等腰三角形 ……(4分) (2)由(1)知AD=BD,BC=AF,则弧AFD=弧BCD,弧AF=弧BC, ∴弧CD=弧DF,∴弧CD=弧DF……① ……(5分) 又BC=AF,∴∠BDC=∠ADF,∠BDC+∠BDA=∠ADF+∠BDA,即∠CDA=∠BDF, 而∠FAE+∠BAF=∠BDF+∠BAF=180°,∴∠FAE=∠BDF=∠CDA, 同理∠DCA=∠AFE ……(8分) ∴在△CDA与△FDE中,∠CDA=∠FAE,∠DCA=∠AFE ∴△CDA∽△FAE ∴,即CD·EF=AC·AF,又由①有AC·AF=DF·EF 命题即证 ……(10分) |
略 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询