二重积分的计算

休闲娱乐达人天际
高能答主

2019-07-24 · 致力于休闲娱乐知识的解答,分享娱乐知识。
休闲娱乐达人天际
采纳数:1605 获赞数:396509

向TA提问 私信TA
展开全部

化为二次积分。

∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2

二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

扩展资料:

几何意义

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积

参考资料来源:百度百科-二重积分

呱呱鱼亭上头0io
2019-07-25 · TA获得超过1094个赞
知道小有建树答主
回答量:1102
采纳率:0%
帮助的人:59.6万
展开全部

二重积分的计算方法

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一笑而过jLNJ1
高粉答主

2014-10-26 · 每个回答都超有意思的
知道大有可为答主
回答量:1.4万
采纳率:77%
帮助的人:7548万
展开全部
由于积分变量是dydz,故积分中的参数x可当做常数,而把x看成常数后,积分区域就可以理解为yoz平面上的圆,其半径的平方=3(1-x^2/4),根据二重积分的几何意义,当被积函数f(x,y)=1时,∫∫f(x,y)dxdy=∫∫dxdy就等于积分区域的面积,因此本题中的∫∫dydz也就等于圆形(积分区域)的面积=πr^2=3π(1-x^2/4)。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2020-03-20 · TA获得超过9386个赞
知道答主
回答量:6.7万
采纳率:3%
帮助的人:3178万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式