如图,A、B是直线a上的两个定点,点C、D在直线b上运动(点C在点D的左侧),AB=CD=4cm,已知a∥b,a、b间
如图,A、B是直线a上的两个定点,点C、D在直线b上运动(点C在点D的左侧),AB=CD=4cm,已知a∥b,a、b间的距离为3cm,连接AC、BD、BC,把△ABC沿B...
如图,A、B是直线a上的两个定点,点C、D在直线b上运动(点C在点D的左侧),AB=CD=4cm,已知a∥b,a、b间的距离为3cm,连接AC、BD、BC,把△ABC沿BC折叠得△A1BC.(1)当A1、D两点重合时,则AC=______cm;(2)当A1、D两点不重合时,①连接A1D,探究A1D与BC的位置关系,并说明理由;②若以A1、C、B、D为顶点的四边形是矩形,求AC的长.
展开
1个回答
展开全部
(1)当A1、D两点重合时,如图1①和图1②,
∵CD∥AB,CD=AB,
∴四边形ACDB是平行四边形.
∵△ABC沿BC折叠得△A1BC,A1、D两点重合,
∴AC=A1C=DC.
∴平行四边形ACDB是菱形.
∴AC=AB=4(cm).
故答案为:4.
(2)当A1、D两点不重合时,
①A1D∥BC.
证明:过点A1作A1E⊥BC,垂足为E,过点D作DF⊥BC,垂足为F,如图2,
∵CD∥AB,CD=AB,
∴四边形ACDB是平行四边形.
∴S△ABC=S△DBC.
∵△ABC沿BC折叠得△A1BC,
∴S△ABC=S△A1BC.
∴S△DBC=S△A1BC.
∴
BC?DF=
BC?A1E.
∴DF=A1E.
∵A1E⊥BC,DF⊥BC,
∴∠A1EB=∠DFB=90°.
∴A1E∥DF.
∴四边形A1DFE是平行四边形.
∴A1D∥EF.
∴A1D∥BC.
②Ⅰ.如图3①,
过点C作CH⊥AB,垂足为H,此时AH<BH.
∵四边形A1DBC是矩形,
∴∠A1CB=90°.
∵△ABC沿BC折叠得△A1BC,
∴∠ACB=∠A1CB.
∴∠ACB=90°.
∵CH⊥AB,
∴∠AHC=∠CHB=90°.
∴∠ACH=90°-∠HCB=∠CBH.
∴△AHC∽△CHB.
∴
=
.
∴CH2=AH?BH.
∵AB=4,CH=
,
∴3=AH?(4-AH).
解得:AH=1或AH=3.
∵AH<BH,
∴AH=1.
∴AC2=CH2+AH2=3+1=4.
∴AC=2.
Ⅱ.如图3②,
过点C作CH⊥AB,垂足为H,此时AH>BH.
同理可得:AH=3.
∴AC2=CH2+AH2=3+9=12.
∴AC=2
.
Ⅲ.如图3③,
∵四边形A1DCB是矩形,
∴∠A1BC=90°.
∵△ABC沿BC折叠得△A1BC,
∴∠ABC=∠A1BC.
∴∠ABC=90°.
∴AC2=BC2+AB2=3+16=19.
∴AC=
.
综上所述;当以A1、C、B、D为顶点的四边形是矩形时,AC的长为2或2
或
∵CD∥AB,CD=AB,
∴四边形ACDB是平行四边形.
∵△ABC沿BC折叠得△A1BC,A1、D两点重合,
∴AC=A1C=DC.
∴平行四边形ACDB是菱形.
∴AC=AB=4(cm).
故答案为:4.
(2)当A1、D两点不重合时,
①A1D∥BC.
证明:过点A1作A1E⊥BC,垂足为E,过点D作DF⊥BC,垂足为F,如图2,
∵CD∥AB,CD=AB,
∴四边形ACDB是平行四边形.
∴S△ABC=S△DBC.
∵△ABC沿BC折叠得△A1BC,
∴S△ABC=S△A1BC.
∴S△DBC=S△A1BC.
∴
1 |
2 |
1 |
2 |
∴DF=A1E.
∵A1E⊥BC,DF⊥BC,
∴∠A1EB=∠DFB=90°.
∴A1E∥DF.
∴四边形A1DFE是平行四边形.
∴A1D∥EF.
∴A1D∥BC.
②Ⅰ.如图3①,
过点C作CH⊥AB,垂足为H,此时AH<BH.
∵四边形A1DBC是矩形,
∴∠A1CB=90°.
∵△ABC沿BC折叠得△A1BC,
∴∠ACB=∠A1CB.
∴∠ACB=90°.
∵CH⊥AB,
∴∠AHC=∠CHB=90°.
∴∠ACH=90°-∠HCB=∠CBH.
∴△AHC∽△CHB.
∴
AH |
CH |
CH |
BH |
∴CH2=AH?BH.
∵AB=4,CH=
3 |
∴3=AH?(4-AH).
解得:AH=1或AH=3.
∵AH<BH,
∴AH=1.
∴AC2=CH2+AH2=3+1=4.
∴AC=2.
Ⅱ.如图3②,
过点C作CH⊥AB,垂足为H,此时AH>BH.
同理可得:AH=3.
∴AC2=CH2+AH2=3+9=12.
∴AC=2
3 |
Ⅲ.如图3③,
∵四边形A1DCB是矩形,
∴∠A1BC=90°.
∵△ABC沿BC折叠得△A1BC,
∴∠ABC=∠A1BC.
∴∠ABC=90°.
∴AC2=BC2+AB2=3+16=19.
∴AC=
19 |
综上所述;当以A1、C、B、D为顶点的四边形是矩形时,AC的长为2或2
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|