如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转后得

如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转后得到△ECD,问:(1)旋转中心是______;(2)顺... 如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转后得到△ECD,问:(1)旋转中心是______;(2)顺时针旋转______度;(3)若AB=3,AC=2,则∠BAD的度数是______,AD的长为______. 展开
 我来答
regao038
2014-09-19 · 超过59用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:141万
展开全部
(1)旋转中心为点D,
故答案为:D;
(2)∵∠BAC=120°,以BC为边向形外作等边△BCD,
∴∠BAC+∠BDC=120°+60°=180°,
∴A,B,D,C四点共圆,
∴∠ECD=∠ABD,在四边形ACDB中,
∠ABD+∠ACD=360°-∠BAC-∠CDB=360°-120°-60=180°=∠ACD+∠ECD,
即∠ACE=180°即A、C、E共线,
∵∠ADB=∠CDE,
∴∠ADB+∠ADC=∠CDE+∠ADC=∠BDC=∠ADE=60°,AD=ED,
故△ADE是等边三角形,
∴∠BAD=60°,
∴旋转的度数为60°,
故答案为60;
(3)∵∠BAC=120°,以BC为边向形外作等边△BCD,
∴∠BAC+∠BDC=120°+60°=180°,
∴A,B,D,C四点共圆,
∴∠ECD=∠ABD,在四边形ACDB中,
∠ABD+∠ACD=360°-∠BAC-∠CDB=360°-120°-60=180°=∠ACD+∠ECD,
即∠ACE=180°即A、C、E共线,
∵∠ADB=∠CDE,
∴∠ADB+∠ADC=∠CDE+∠ADC=∠BDC=∠ADE=60°,AD=ED,
故△ADE是等边三角形,
∴∠BAD=60°,
AD=AE=AC+AB=3+2=5.
故答案为:60°,5.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式