某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示: 甲 乙 进价(元/部

某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需1... 某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示: 甲 乙 进价(元/部) 4000 2500 售价(元/部) 4300 3000 该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润. 展开
 我来答
百度网友9c2fbdb
2014-09-04 · TA获得超过133个赞
知道答主
回答量:174
采纳率:100%
帮助的人:139万
展开全部
解:(1)设商场计划购进甲种手机x部,乙种手机y部,根据题意,得
 ,解得:
答:商场计划购进甲种手机20部,乙种手机30部。
(2)设甲种手机减少a部,则乙种手机增加2a部,根据题意,得
,解得:a≤5。
设全部销售后获得的毛利润为W元,由题意,得

∵k=0.07>0,∴W随a的增大而增大。
∴当a=5时,W 最大 =2.45。
答:当该商场购进甲种手机15部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.45万元。

(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为15.5万元和两种手机的销售利润为2.1万元建立方程组求出其解即可。
(2)设甲种手机减少a部,则乙种手机增加2a部,表示出购买的总资金,由总资金部超过16万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润。
浅夕拾I繁梦Dream
2020-04-24
知道答主
回答量:52
采纳率:0%
帮助的人:3.2万
展开全部
解:(1)设商场计划购进甲种手机x部,乙种手机y部,根据题意,得
 ,解得:。
答:商场计划购进甲种手机20部,乙种手机30部。
(2)设甲种手机减少a部,则乙种手机增加2a部,根据题意,得
,解得:a≤5。
设全部销售后获得的毛利润为W元,由题意,得
。
∵k=0.07>0,∴W随a的增大而增大。
∴当a=5时,W最大=2.45。
答:当该商场购进甲种手机15部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.45万元。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式