已知椭圆C1:x2a2+y2b2=1(a>b>0)的短轴长为2,离心率为22;抛物线C2:y2=2px(p>0)上一点(1,m )

已知椭圆C1:x2a2+y2b2=1(a>b>0)的短轴长为2,离心率为22;抛物线C2:y2=2px(p>0)上一点(1,m)到其焦点的距离为2.(1)求椭圆C1和抛物... 已知椭圆C1:x2a2+y2b2=1(a>b>0)的短轴长为2,离心率为22;抛物线C2:y2=2px(p>0)上一点(1,m )到其焦点的距离为2.(1)求椭圆C1和抛物线C2的方程;(2)设直线l同时与椭圆C1和抛物线C2相切,求直线l的方程. 展开
 我来答
入戏9nE9s16
2014-10-09 · TA获得超过179个赞
知道答主
回答量:127
采纳率:100%
帮助的人:123万
展开全部
(1)由2b=2,得b=1.                                  …(1分)
c
a
2
2
,得
a2?1
a2
1
2
a2=2
.                        …(2分)
∴椭圆C1的方程是
x2
2
+y2=1
.                              …(3分)
依题意有1+
p
2
=2
,得p=2,…(4分)
∴抛物线C2的方程是y2=4x.…(5分)
(2)①当直线l的斜率不存在时,设直线l的方程为x=n.
由直线l与椭圆C1相切,可得n=±
2

由直线与抛物线C2相切得n=0.
∴此时符合题设条件的直线l不存在.…(7分)
②当直线l的斜率存在时,设直线l:y=kx+n   …(8分)
当直线l与椭圆C1相切时,联立
x2
2
+y2=1
y=kx+n
,得(1+2k2)x2+4knx+2n2-2=0,
1=(4kn)2?4(1+2k2)(2n2?2)=0,得n2=2k2+1,…(10分)
当直线l与抛物线C2相切时,联立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消