数列{an}满足:a1=6,an+1=a 2n+4an+2,(n∈N*)(Ⅰ)设Cn=log2(an+2),求证:{Cn}是等比数列;(Ⅱ
数列{an}满足:a1=6,an+1=a2n+4an+2,(n∈N*)(Ⅰ)设Cn=log2(an+2),求证:{Cn}是等比数列;(Ⅱ)求数列{an}的通项公式;(Ⅲ)...
数列{an}满足:a1=6,an+1=a 2n+4an+2,(n∈N*)(Ⅰ)设Cn=log2(an+2),求证:{Cn}是等比数列;(Ⅱ)求数列{an}的通项公式;(Ⅲ)设bn=1an?2-1a2n+4an,数列{bn}的前n项和为Tn,求证:730≤Tn<1.
展开
滕阳炎pN
推荐于2016-12-01
·
TA获得超过216个赞
知道答主
回答量:117
采纳率:50%
帮助的人:123万
关注
(Ⅰ)证明:由a
n+1=a
+4a
n+2,得
an+1+2=(an+2)2,
∴log
2(a
n+1+2)=2log
2(a
n+2),
∵C
n=log
2(a
n+2),
即C
n+1=2C
n,
∴数列{C
n}是以2为公比的等比数列;
(Ⅱ)解:∵a
1=6,
∴C
1=log
2(a
1+2)=log
28=3,
则
Cn=3?2n?1,即
an+2=23?2n?1,
∴
an=23?2n?1?2;
(Ⅲ)证明:把
an=23?2n?1?2代入b
n=
-
,
得:
bn=?,
则
Tn=(?)+(?)+…+(?)=
?=?.
∴
≤Tn<.
收起
为你推荐: