x2arctanx的不定积分

 我来答
Dilraba学长
高粉答主

2019-05-26 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411043

向TA提问 私信TA
展开全部

(1/3)x^3.arctanx - (1/6)x^2 + (1/6)ln|1+x^2| + C

解题过程如下:

∫ x^2arctanx dx

=(1/3)∫ arctanx d(x^3)

=(1/3)x^3.arctanx - (1/3)∫ x^3/(1+x^2) dx

=(1/3)x^3.arctanx - (1/3)∫ x dx + (1/6)∫ 2x/(1+x^2) dx

=(1/3)x^3.arctanx - (1/6)x^2 + (1/6)ln|1+x^2| + C

记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

扩展资料

常用积分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

你爱我妈呀
2019-05-24 · TA获得超过8.6万个赞
知道小有建树答主
回答量:686
采纳率:100%
帮助的人:26.5万
展开全部

求解过程如下:

∫(x^2)*arctanxdx

=1/3∫arctanxdx^3

=1/3x^3arctanx-1/3∫x^3/(1+x^2)dx

=1/3x^3arctanx-1/6∫x^2/(1+x^2)dx^2

=1/3x^3arctanx-1/6∫[1-1/(1+x^2)]dx^2

=1/3x^3arctanx-1/6x^2+1/6ln(1+x^2)+C(C为常数)

设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu 。两边积分,得分部积分公式∫udv=uv-∫vdu。

扩展资料:

不定积分公式

1、∫kdx=kx+C。

2、∫x^ndx=[1/(n+1)]x^(n+1)+C。

3、∫a^xdx=a^x/lna+C。

4、∫sinxdx=-cosx+C。

5、∫cosxdx=sinx+C。

6、∫cscx dx=In|cscx-cotx|+C。  

7、∫1/√(x^2+a^2) dx=In(x+√(x^2+a^2))+C。 

8、∫1/√(x^2-a^2) dx=|In(x+√(x^2-a^2))|+C。



本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
758132939
2010-12-30 · 超过21用户采纳过TA的回答
知道答主
回答量:89
采纳率:0%
帮助的人:30.6万
展开全部

分部积分,结果=X^ 3 ·arctanX/3-X^2/6+In|1+X^2|/6+C,发张图给你看下我的解题过程

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tllau38
高粉答主

2014-12-21 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
∫ x^2arctanx dx

=(1/3)∫ arctanx d(x^3)
=(1/3)x^3.arctanx - (1/3)∫ x^3/(1+x^2) dx
=(1/3)x^3.arctanx - (1/3)∫ x dx + (1/6)∫ 2x/(1+x^2) dx
=(1/3)x^3.arctanx - (1/6)x^2 + (1/6)ln|1+x^2| + C
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式