(2010?双鸭山)如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点
(2010?双鸭山)如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC...
(2010?双鸭山)如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是( )①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个
展开
1个回答
展开全部
(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,
∴AC=BC,EC=DC,∠ACB=∠DCE=60°,
∴∠ACE=∠BCD=120°,
在△BCD和△ACE中
∵
|
∴△BCD≌△ACE
∴AE=BD,故结论①正确;
(2)∵△BCD≌△ECA,
∴∠GAC=∠FBC,
又∵∠ACG=∠BCF=60°,AC=BC
∴△ACG≌△BCF,
∴AG=BF,故结论②正确;
(3)∠DCE=∠ABC=60°,∴DC∥AB,∴
DF |
BF |
DC |
AB |
∵∠ACB=∠DEC=60°,∴DE∥AC,∴
DG |
CG |
DE |
AC |
DC |
AB |
∴
DF |
BF |
DG |
CG |
(4)
过C作CN⊥AE于N,CZ⊥BD于Z,
则∠CNE=∠CZD=90°,
∵△ACE≌△BCD,
∴∠CDZ=∠CEN,
在△CDZ和△CEN中
∵
|
∴△CDZ≌△CEN,
∴CZ=CN,
∵CN⊥AE,CZ⊥BD,
∴∠BOC=∠EOC,故结论④正确.
综上所述,四个结论均正确,故本题选D.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询