如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F,将△ABD沿BD折起,

如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2所示... 如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2所示.(Ⅰ)求证:AE⊥平面BCD;(Ⅱ)求二面角A-DC-B的余弦值.(Ⅲ)在线段AF上是否存在点M使得EM∥平面ADC?若存在,请指明点M的位置;若不存在,请说明理由. 展开
 我来答
音色605U
推荐于2016-04-18 · TA获得超过107个赞
知道答主
回答量:189
采纳率:0%
帮助的人:66.2万
展开全部
解答:(Ⅰ)证明:∵平面ABD⊥平面BCD,交线为BD,
又在△ABD中,AE⊥BD于E,AE?平面ABD
∴AE⊥平面BCD.(3分)
(Ⅱ)解:由(Ⅰ)结论AE⊥平面BCD,∴AE⊥EF.
由题意知EF⊥BD,又AE⊥BD.
如图,以E为坐标原点,分别以EF,ED,EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,(4分)
不妨设AB=BD=DC=AD=2,则BE=ED=1.
由图1条件计算得,AE=
3
BC=2
3
BF=
3
3

E(0,0,0),D(0,1,0),B(0,?1,0),A(0,0,
3
),F(
3
3
,0,0),C(
3
,2,0)
DC
=(
3
,1,0),
AD
=(0,1,?
3
)

∵AE⊥平面BCD,∴平面DCB的法向量为
EA
=(0,0,
3
).(6分)
设平面ADC的法向量为
n
=(x,y,z),
n
?
DC
=0
n
?
AD
=0
,即
3
x+y=0
y?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消