已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线方程是√5x-2y=0
(1)求双曲线的方程(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形面积为(81/2),求k的取值范围...
(1)求双曲线的方程
(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形面积为(81/2),求k的取值范围
求具体步骤,回答给十分,骗你们我死全家 展开
(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形面积为(81/2),求k的取值范围
求具体步骤,回答给十分,骗你们我死全家 展开
2个回答
展开全部
解:(Ⅰ)解:设双曲线C的方程为 x2a2-y2b2=1(a>0,b>0).
由题设得 {a2+b2=9ba=52,解得 {a2=4b2=5,所以双曲线方程为 x24-y25=1.
(Ⅱ)解:设直线l的方程为y=kx+m(k≠0).
点M(x1,y1),N(x2,y2)的坐标满足方程组 {y=kx+mx24-y25=1
将①式代入②式,得 x24-(kx+m)25=1,整理得(5-4k2)x2-8kmx-4m2-20=0.
此方程有两个一等实根,于是5-4k2≠0,且△=(-8km)2+4(5-4k2)(4m2+20)>0.整理得m2+5-4k2>0. ③
由根与系数的关系可知线段MN的中点坐标(x0,y0)满足 x0=x1+x22=4km5-4k2, y0=kx0+m=5m5-4k2.
从而线段MN的垂直平分线方程为 y-5m5-4k2=-1k(x-4km5-4k2).
此直线与x轴,y轴的交点坐标分别为 (9km5-4k2,0), (0,9m5-4k2).
由题设可得 12|9km5-4k2|•|9m5-4k2|=812.
整理得 m2=(5-4k2)2|k|,k≠0.
将上式代入③式得 (5-4k2)2|k|+5-4k2>0,整理得(4k2-5)(4k2-|k|-5)>0,k≠0.
解得 0<|k|<52或 |k|>54.
所以k的取值范围是 (-∞,-54)∪(-52,0)∪(0,52)∪(54,+∞).
由题设得 {a2+b2=9ba=52,解得 {a2=4b2=5,所以双曲线方程为 x24-y25=1.
(Ⅱ)解:设直线l的方程为y=kx+m(k≠0).
点M(x1,y1),N(x2,y2)的坐标满足方程组 {y=kx+mx24-y25=1
将①式代入②式,得 x24-(kx+m)25=1,整理得(5-4k2)x2-8kmx-4m2-20=0.
此方程有两个一等实根,于是5-4k2≠0,且△=(-8km)2+4(5-4k2)(4m2+20)>0.整理得m2+5-4k2>0. ③
由根与系数的关系可知线段MN的中点坐标(x0,y0)满足 x0=x1+x22=4km5-4k2, y0=kx0+m=5m5-4k2.
从而线段MN的垂直平分线方程为 y-5m5-4k2=-1k(x-4km5-4k2).
此直线与x轴,y轴的交点坐标分别为 (9km5-4k2,0), (0,9m5-4k2).
由题设可得 12|9km5-4k2|•|9m5-4k2|=812.
整理得 m2=(5-4k2)2|k|,k≠0.
将上式代入③式得 (5-4k2)2|k|+5-4k2>0,整理得(4k2-5)(4k2-|k|-5)>0,k≠0.
解得 0<|k|<52或 |k|>54.
所以k的取值范围是 (-∞,-54)∪(-52,0)∪(0,52)∪(54,+∞).
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
2012-01-21
展开全部
解:(Ⅰ)解:设双曲线C的方程为 x2a2-y2b2=1(a>0,b>0).
由题设得 {a2+b2=9ba=52,解得 {a2=4b2=5,所以双曲线方程为 x24-y25=1.
(Ⅱ)解:设直线l的方程为y=kx+m(k≠0).
点M(x1,y1),N(x2,y2)的坐标满足方程组 {y=kx+mx24-y25=1
将①式代入②式,得 x24-(kx+m)25=1,整理得(5-4k2)x2-8kmx-4m2-20=0.
此方程有两个一等实根,于是5-4k2≠0,且△=(-8km)2+4(5-4k2)(4m2+20)>0.整理得m2+5-4k2>0. ③
由根与系数的关系可知线段MN的中点坐标(x0,y0)满足 x0=x1+x22=4km5-4k2, y0=kx0+m=5m5-4k2.
从而线段MN的垂直平分线方程为 y-5m5-4k2=-1k(x-4km5-4k2).
此直线与x轴,y轴的交点坐标分别为 (9km5-4k2,0), (0,9m5-4k2).
由题设可得 12|9km5-4k2|•|9m5-4k2|=812.
整理得 m2=(5-4k2)2|k|,k≠0.
将上式代入③式得 (5-4k2)2|k|+5-4k2>0,整理得(4k2-5)(4k2-|k|-5)>0,k≠0.
解得 0<|k|<52或 |k|>54.
所以k的取值范围是 (-∞,-54)∪(-52,0)∪(0,52)∪(54,+∞).
由题设得 {a2+b2=9ba=52,解得 {a2=4b2=5,所以双曲线方程为 x24-y25=1.
(Ⅱ)解:设直线l的方程为y=kx+m(k≠0).
点M(x1,y1),N(x2,y2)的坐标满足方程组 {y=kx+mx24-y25=1
将①式代入②式,得 x24-(kx+m)25=1,整理得(5-4k2)x2-8kmx-4m2-20=0.
此方程有两个一等实根,于是5-4k2≠0,且△=(-8km)2+4(5-4k2)(4m2+20)>0.整理得m2+5-4k2>0. ③
由根与系数的关系可知线段MN的中点坐标(x0,y0)满足 x0=x1+x22=4km5-4k2, y0=kx0+m=5m5-4k2.
从而线段MN的垂直平分线方程为 y-5m5-4k2=-1k(x-4km5-4k2).
此直线与x轴,y轴的交点坐标分别为 (9km5-4k2,0), (0,9m5-4k2).
由题设可得 12|9km5-4k2|•|9m5-4k2|=812.
整理得 m2=(5-4k2)2|k|,k≠0.
将上式代入③式得 (5-4k2)2|k|+5-4k2>0,整理得(4k2-5)(4k2-|k|-5)>0,k≠0.
解得 0<|k|<52或 |k|>54.
所以k的取值范围是 (-∞,-54)∪(-52,0)∪(0,52)∪(54,+∞).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询