(2014?玉林)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与A

(2014?玉林)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已... (2014?玉林)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长. 展开
 我来答
遇见萤火的七月Dh
推荐于2017-09-20 · TA获得超过458个赞
知道答主
回答量:122
采纳率:100%
帮助的人:140万
展开全部
(1)证明:连接OD,如图,∵DE为⊙O的切线,
∴OD⊥DE,
∴∠ODE=90°,即∠2+∠ODC=90°,
∵OC=OD,
∴∠C=∠ODC,
∴∠2+∠C=90°,
而OC⊥OB,
∴∠C+∠3=90°,
∴∠2=∠3,
∵∠1=∠3,
∴∠1=∠2;

(2)解:∵OF:OB=1:3,⊙O的半径为3,
∴OF=1,
∵∠1=∠2,
∴EF=ED,
在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,
∵OD2+DE2=OE2
∴32+x2=(x+1)2,解得x=4,
∴DE=4,OE=5,
∵AG为⊙O的切线,
∴AG⊥AE,
∴∠GAE=90°,
而∠OED=∠GEA,
∴Rt△EOD∽Rt△EGA,
OD
AG
=
DE
AE
,即
3
AG
=
4
3+5

∴AG=6.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式