(2012?娄底)如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA

(2012?娄底)如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四... (2012?娄底)如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由. 展开
 我来答
__嘣__
推荐于2016-12-01 · TA获得超过104个赞
知道答主
回答量:121
采纳率:0%
帮助的人:118万
展开全部
证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1
2
AD,CN=
1
2
BC,
∴AM=CN,
在△MAB和△NDC中,
AB=CD
∠A=∠C=90°
AM=CN

∴△MBA≌△NDC(SAS);

(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
DM=BN
DQ=BP
∠MDQ=∠NBP

∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1
2
AN,
∴MQ=
1
2
BM,
∵MP=
1
2
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式