已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx,则f(e)=______
已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx,则f(e)=______....
已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx,则f(e)=______.
展开
3个回答
展开全部
g(x)=f(x)-ax
f(x)=lnx
x^2
定义域为x>0
g(x)=lnx
x^2-ax要满足其定义域内为增函数
那么g(x)的导数在定义域为x>0恒大于等于0
g(x)导数=1/x
2x-a≥0
a≤1/x
2x
根据均值不等式1/x
2x≥2根号2
所以a要小于它的最小值2根号2
实数a的取值范围a≤2根号2
h(x)=x-3ax
h(x)的导数=3x-3a
令导数等于0
x=±根号a
所以h(x)在[-根号a
根号a]单调递减
a大于1又由第一问知道a≤2根号2
根号a在[1
2]范围内
f(x)极小值f(根号a)=0
f(x)=lnx
x^2
定义域为x>0
g(x)=lnx
x^2-ax要满足其定义域内为增函数
那么g(x)的导数在定义域为x>0恒大于等于0
g(x)导数=1/x
2x-a≥0
a≤1/x
2x
根据均值不等式1/x
2x≥2根号2
所以a要小于它的最小值2根号2
实数a的取值范围a≤2根号2
h(x)=x-3ax
h(x)的导数=3x-3a
令导数等于0
x=±根号a
所以h(x)在[-根号a
根号a]单调递减
a大于1又由第一问知道a≤2根号2
根号a在[1
2]范围内
f(x)极小值f(根号a)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对f(x)=2xf′(1)+lnx,两边求导得f′(x)=2f′(1)+
1
x
,
令x=1得f′(1)=2f′(1)+1,解得f′(1)=-1,
所以f(1)=2(-1)+0=-2,
所以在点M处的切线方程为:y-(-2)=-(x-1),即x+y+1=0,
故答案为:x+y+1=0.
1
x
,
令x=1得f′(1)=2f′(1)+1,解得f′(1)=-1,
所以f(1)=2(-1)+0=-2,
所以在点M处的切线方程为:y-(-2)=-(x-1),即x+y+1=0,
故答案为:x+y+1=0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询