学霸来帮忙啊这几道高数怎么解
令A=∫ e^(-x)sin2xdx
A=∫ e^(-x)sin2xdx = - ∫ sin2xd(e^(-x))=-e^(-x)sin2x+∫ e^(-x)d(sin2x)
=-e^(-x)sin2x+2∫ e^(-x)cos2xdx
=-e^(-x)sin2x-2∫ cos2xd(e^(-x))
=-e^(-x)sin2x-2cos2x*e^(-x)+2∫ e^(-x)d(cos2x)
=-e^(-x)sin2x-2cos2x*e^(-x)-4∫ e^(-x)sin2xdx
=-e^(-x)sin2x-2cos2x*e^(-x)-4A
5A=-e^(-x)sin2x-2cos2x*e^(-x)
A=1/5[-e^(-x)sin2x-2cos2x*e^(-x)]
=-1/5(sin2x+2cos2x)e^(-x)∫ln(cosx)/cos²x dx
=∫sec²xln(cosx) dx
=∫ln(cosx)d(tanx)
=tanxln(cosx)-∫tanxd[ln(cosx)]
=tanxln(cosx)-∫tanx*1/cosx*(-sinx) dx
=tanxln(cosx)+∫tan²xdx
=tanxln(cosx)+∫(sec²x-1)dx
=tanxln(cosx)+tanx-x+C∫ln(x+√(1+x^2))dx
=xln(x+√(1+x^2) -∫xd(ln(x+√(1+x^2))
[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1+x^2)
=xln(x+√(1+x^2)-∫xdx/√(1+x^2)
=xln(x+√(1+x^2)-(1/2)∫d(1+x^2)/√(1+x^2)
=xln(x+√(1+x^2)-√(1+x^2)+C