已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上的一点,且其纵坐标为4,|PF|=4.(Ⅰ)求抛物线的方

已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上的一点,且其纵坐标为4,|PF|=4.(Ⅰ)求抛物线的方程;(Ⅱ)设点A(x1,y1),B(x2,y2)(yi≤... 已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上的一点,且其纵坐标为4,|PF|=4.(Ⅰ)求抛物线的方程;(Ⅱ) 设点A(x1,y1),B(x2,y2)(yi≤0,i=1,2)是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程. 展开
 我来答
手机用户40573
推荐于2016-01-25 · 超过53用户采纳过TA的回答
知道答主
回答量:117
采纳率:100%
帮助的人:45.7万
展开全部
(I)∵|PF|=4,∴xP+
P
2
=4,
∴P点的坐标是(4-
P
2
,4),
∴有16=2P(4-
P
2
)?P=4,
∴抛物线方程是y2=8x.
(II)由(I)知点P的坐标为(2,4),
∵∠APB的角平分线与x轴垂直,∴PA、PB的倾斜角互补,即PA、PB的斜率互为相反数,
设PA的斜率为k,则PA:y-4=k(x-2),k≠0
y2=8x
y?4=k(x?2)
?y2?
8
k
y?16+
32
k
=0
,方程的解为4、y1
由韦达定理得:y1+4=
8
k
,即y1=
8
k
-4,同理y2=-
8
k
-4,
y12=8x1y22=8x2
∴kAB=
y1?y2
x1?x2
=
8
y1+y2
=-1,
设AB:y=-x+b,
y
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消