运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积

运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.(1)如图1,在等腰三角形ABC中,AB=AC,AC边上的高为h,M... 运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.(1)如图1,在等腰三角形ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2.请用面积法证明:h1+h2=h;(2)当点M在BC延长线上时,h1、h2、h之间的等量关系式是______;(直接写出结论不必证明)(3)如图2在平面直角坐标系中有两条直线l1:y=34x+3、l2:y=-3x+3,若l2上的一点M到l1的距离是1,请运用(1)、(2)的结论求出点M的坐标. 展开
 我来答
秋雨飒696
2014-10-11 · TA获得超过126个赞
知道答主
回答量:116
采纳率:100%
帮助的人:114万
展开全部
(1)∵S△ABC=S△ABM+S△AMC,S△ABM=
1
2
×AB×ME=
1
2
×AB×h1,S△AMC=
1
2
×AC×MF=
1
2
×AC×h2
又∵S△ABC=
1
2
×AC×BD=
1
2
×AC×h,
1
2
×AC×h=
1
2
×AB×h1+
1
2
×AC×h2
∴h1+h2=h.

(2)h1-h2=h.

(3)在y=
3
4
x+3中,令x=0得y=3;令y=0得x=-4,则:
A(-4,0),B(0,3)同理求得C(1,0),
AB=
OA2+OB2
=5,AC=5,
所以AB=AC,即△ABC为等腰三角形.
①当点M在BC边上时,由h1+h2=h得:
1+My=OB,My=3-1=2,把它代入y=-3x+3中求得:Mx=
1
3

∴M(
1
3
,2);
②当点M在CB延长线上时,由h1-h2=h得:My-1=OB,My=3+1=4,
把它代入y=-3x+3中求得:Mx=-
1
3

∴M(-
1
3
,4),
∴点M的坐标为(
1
3
,2)或(?
1
3
,4).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式