设y1,y2是一阶线性非齐次微分方程y'+p(x)y=Q(x)的两个特解,若常数λ,μ使λy1+μ

设y1,y2是一阶线性非齐次微分方程y'+p(x)y=Q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,求常数λ,μ... 设y1,y2是一阶线性非齐次微分方程y'+p(x)y=Q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,求常数λ,μ 展开
 我来答
帐号已注销
2021-09-13 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:160万
展开全部

y1,y2是一阶线性非齐次微分方程y'+p(x)y=Q(x)的两个特解,

所以,

y1'+p(x)y1=Q(x)

y2'+p(x)y2=Q(x)

λ,μ使λy1+μy2是该方程的解,

所以,

(λy1+μy2)'+p(x)(λy1+μy2)

=λ[y1'+p(x)y1]+μ[y1'+p(x)y1]

=λQ(x)+μQ(x)

=Q(x)

∴ λ+μ=1

λy1-μy2是该方程对应的齐次方程的解,

所以,

(λy1-μy2)'+p(x)(λy1-μy2)

=λ[y1'+p(x)y1]-μ[y1'+p(x)y1]

=λQ(x)-μQ(x)

=0

∴ λ-μ=0

∴λ=μ=1/2

微分方程

是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。

尹六六老师
推荐于2016-08-29 · 知道合伙人教育行家
尹六六老师
知道合伙人教育行家
采纳数:33774 获赞数:147228
百强高中数学竞赛教练, 大学教案评比第一名, 最受学生欢迎教

向TA提问 私信TA
展开全部
y1,y2是一阶线性非齐次微分方程y'+p(x)y=Q(x)的两个特解,
所以,
y1'+p(x)y1=Q(x)
y2'+p(x)y2=Q(x)
λ,μ使λy1+μy2是该方程的解,
所以,
(λy1+μy2)'+p(x)(λy1+μy2)
=λ[y1'+p(x)y1]+μ[y1'+p(x)y1]
=λQ(x)+μQ(x)
=Q(x)
∴ λ+μ=1
λy1-μy2是该方程对应的齐次方程的解,
所以,
(λy1-μy2)'+p(x)(λy1-μy2)
=λ[y1'+p(x)y1]-μ[y1'+p(x)y1]
=λQ(x)-μQ(x)
=0
∴ λ-μ=0

∴λ=μ=1/2
追问
谢谢啦
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式