如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,CB=3CG(Ⅰ)求证:PC⊥
如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,CB=3CG(Ⅰ)求证:PC⊥BC;(Ⅱ)求三棱锥C-DEG的体积;...
如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,CB=3CG(Ⅰ)求证:PC⊥BC;(Ⅱ)求三棱锥C-DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;若不存在,说明理由.
展开
1个回答
展开全部
解答:(Ⅰ)证明:∵PD⊥平面ABCD,∴PD⊥BC
又∵ABCD是正方形∴BC⊥CD
∵PD∩CD=D
∴BC⊥平面PCD…(3分)
又∵PC?面PBC
∴PC⊥BC…(4分)
(Ⅱ)解:∵BC⊥平面PCD,
∴GC是三棱锥G-DEC的高 …(5分)
∵E是PC的中点,
∴S△EDC=
S△EDC=
S△PDC=
?(
?2?2)=1…(6分)
∴VC?DEG=VG?DEC=
GC?S△DEC=
?
?1=
…(8分)
(Ⅲ)解:连结AC,取AC中点O,连结EO,GO,延长GO交AD于点M,则PA∥平面MEG…(9分)
下面证明之
∵E为PC的中点,O是AC的中点,
∴EO∥PA,…(10分)
又∵EO?平面MEG,PA?平面MEG
∴PA∥平面MEG…(11分)
在正方形ABCD中,∵O是AC的中点,∴△OCG≌△OAM,
∴AM=CG=
,∴所求AM的长为
.…(12分)
又∵ABCD是正方形∴BC⊥CD
∵PD∩CD=D
∴BC⊥平面PCD…(3分)
又∵PC?面PBC
∴PC⊥BC…(4分)
(Ⅱ)解:∵BC⊥平面PCD,
∴GC是三棱锥G-DEC的高 …(5分)
∵E是PC的中点,
∴S△EDC=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴VC?DEG=VG?DEC=
1 |
3 |
1 |
3 |
2 |
3 |
2 |
9 |
(Ⅲ)解:连结AC,取AC中点O,连结EO,GO,延长GO交AD于点M,则PA∥平面MEG…(9分)
下面证明之
∵E为PC的中点,O是AC的中点,
∴EO∥PA,…(10分)
又∵EO?平面MEG,PA?平面MEG
∴PA∥平面MEG…(11分)
在正方形ABCD中,∵O是AC的中点,∴△OCG≌△OAM,
∴AM=CG=
2 |
3 |
2 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询