如图,在⊙O中,弦AD、BC相交于点E,连结OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的半径
如图,在⊙O中,弦AD、BC相交于点E,连结OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的半径为5,DE=1,求AE的长....
如图,在⊙O中,弦AD、BC相交于点E,连结OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的半径为5,DE=1,求AE的长.
展开
展开全部
解答:(1)证明:如图,∵AD=BC,
∴
=
,
∴
-
=
-
,即
=
∴AB=CD;
(2)解:如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.
则AF=FD,BG=CG.
∵AD=BC,
∴AF=CG.
在Rt△AOF与Rt△COG中,
,
∴Rt△AOF≌Rt△COG(HL),
∴OF=OG,
∴四边形OFEG是正方形,
∴OF=EF.
设OF=EF=x,则AF=FD=x+1,
在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,
解得 x=3.
则AF=3+1+3=7,即AE=AF+3=10.
∴
AD |
BC |
∴
AD |
BD |
BC |
BD |
AB |
CD |
∴AB=CD;
(2)解:如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.
则AF=FD,BG=CG.
∵AD=BC,
∴AF=CG.
在Rt△AOF与Rt△COG中,
|
∴Rt△AOF≌Rt△COG(HL),
∴OF=OG,
∴四边形OFEG是正方形,
∴OF=EF.
设OF=EF=x,则AF=FD=x+1,
在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,
解得 x=3.
则AF=3+1+3=7,即AE=AF+3=10.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询