已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,与x轴另一交点为D,与y轴交于点C.(1)求

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,与x轴另一交点为D,与y轴交于点C.(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式;... 已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,与x轴另一交点为D,与y轴交于点C.(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式;(2)如图,连接AC,在抛物线上是否存在点P,使∠ACD+∠ACP=45°?若存在,求出点P的坐标;若不存在,请说明理由;(3)连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,①点E在运动过程中四边形OEAF的面积是否发生变化,并说明理由;②当EF分四边形OEAF的面积为1:2两部分时,求点E的坐标. 展开
 我来答
手机用户46424
推荐于2016-10-31 · 超过57用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:114万
展开全部
(1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,
9a+3b+3=0
16a+4b+3=1

解得
a=
1
2
b=?
5
2

∴抛物线的关系式为y=
1
2
x2-
5
2
x+3;

(2)过点D作DF⊥AC于F,
令y=0,则
1
2
x2-
5
2
x+3=0,
整理得,x2-5x+6=0,
解得x1=2,x2=3,
∴点D坐标为(2,0),AD=1,
令x=0,则y=3,
∴点C坐标为(0,3),
∴OC=OA=3,
∴△OAC是等腰直角三角形,
∴AC=
OA2+OC2
=
32+32
=3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消