已知:如图,AB为圆O的直径,点E是OA上任意一点,过点E作弦CD⊥AB,点F是BC弧上一点,链接AF交CE与点H,联结AC

CF,BF2.若AE比BE=1比4,求CD的长。3.在(2)条件下,求AH×AF的值... CF,BF
2.若AE比BE=1比4,求CD的长。
3.在(2)条件下,求AH×AF的值
展开
wjl371116
2012-01-21 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67440

向TA提问 私信TA
展开全部
已知:如图,AB为圆O的直径,点E是OA上任意一点,过点E作弦CD⊥AB,点F是BC弧上一点,连接AF交CE与点H,联结AC ,CF,BF;1)。.若AE比BE=1比4,求CD的长。2)。.在(1)的条件下,求AH×AF的值
解:1).设圆的直径为d,因为AB是直径,故AB=d,,AE/BE=1/4,故AE=d/5,BE=4d/5;
∠ACB是直径上的圆周角,故∠ACB=90°,CD⊥AB,故CE是RT△ABC斜边上的高,
AC²=AE×AB=(d/5)×d=d²/5,故AC=d/√5=(√5/5)d.
CE²=AC²-AE²=d²/5-d²/25=4d²/25,∴CE=2d/5,于是得CD=2CE=4d/5.
2).RT△AEH~RT△AFB,AH/AB=AE/AF,∴AH×AF=AB×AE=d×(d/5)=d²/5
520柯南1314
2012-12-27 · TA获得超过142个赞
知道答主
回答量:37
采纳率:0%
帮助的人:5.4万
展开全部
(1)证明:∵直径AB⊥CD,
∴弧AC=弧AD,
∴∠F=∠ACD,
而∠CAH=∠FAC,
∴△ACH∽△AFC;
(2)解:AH•AF=AE•AB.理由如下:
连BF,如图.
∵AB为直径,
∴∠AFB=90°,
∴∠AFB=∠AEH=90°,
而∠EAH=∠FAB,
∴Rt△AEH∽Rt△AFB,
∴AE:AF=AH:AB,
即AH•AF=AE•AB;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式