关于间断点的选择题 设函数 f(x) 和 φ(x) 都在(-∞,+∞) 内有定义 f(x)连续 且f(x)≠0 φ(x)有断点

设函数f(x)和φ(x)都在(-∞,+∞)内有定义f(x)连续且f(x)≠0φ(x)有断点那么A.φ(f(x))必有间断点B.(φ(x))^2必有间断点C.f(φ(x))... 设函数 f(x) 和 φ(x) 都在(-∞,+∞) 内有定义 f(x)连续 且f(x)≠0
φ(x)有断点
那么
A. φ(f(x)) 必有间断点
B. (φ(x))^2 必有间断点
C. f(φ(x)) 必有间断点 ----这个是错的 为什么呢?
D. φ(x)/f(x) 必有间断点

C是不是因为虽然有间断点 但是 φ(x)的值域 恰好又是(-∞,+∞) 所以f(φ(x))
不一定有间断点的

答案的说法好像不太适用于这个题
答案说 φ(x) 间断点对应的值不在f(x)定义域内 这个题f(x)的定义域明明是
(-∞,+∞) 所以φ(x)不论什么值肯定是在f(x)定义域内的吧
展开
SanCaesar
2012-01-22 · TA获得超过869个赞
知道小有建树答主
回答量:397
采纳率:0%
帮助的人:417万
展开全部
f(φ(x)) 是以φ(x)的值域为定义域的,而φ(x)有断点 ≠ φ(x)的值域有取不到的区间,所以f(φ(x))
不一定有间断点的。
至于答案的问题要看怎么理解了,你这么理解“f(φ(x))的定义域,亦即f(x)的定义域不对应φ(x) 间断点所对应的x的取值”~~~
akq106
2012-01-22
知道答主
回答量:3
采纳率:0%
帮助的人:4743
展开全部
首先,φ(x) 的值域并不是(-∞,+∞),答案说的是有道理的。
其次,大学微积分中关于连续与间断的定义中,将间断点分为第一类和第二类间断点。你可以自己查阅相关资料。我们来假设φ(x)在x=a处是间断点,可以是第二类的无穷间断点,这样的话 f(φ(x)) 必有间断点,但当时第一间断点时则不一定成立。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
9527追梦之旅
2012-01-25 · 超过19用户采纳过TA的回答
知道答主
回答量:94
采纳率:0%
帮助的人:37.1万
展开全部
φ(x) 的值域并不是(-∞,+∞),答案说的是有道理的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式