数学中,什么是演绎推理法,麻烦举例说明
3个回答
展开全部
演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理。
1.演绎推理是由一般到特殊的推理;
2.“三段论”是演绎推理的一般模式;包括
(1)大前提——已知的一般原理;
(2)小前提——所研究的特殊情况;
(3)结论——据一般原理,对特殊情况做出的判断.
三段论的基本格式
M—P(M是P)
(大前提)
S—M(S是M)
(小前提)
S—P(S是P)
(结论)
3.三段论推理的依据,用集合的观点来理解:
若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P。
例
1
、
把“函数y=x
2
+x+1的图象是一条抛物线”恢复成完全三段论。
解:二次函数的图象是一条抛物线
(大前提)
函数y=x
2
+x+1是二次函数(小前提)
所以,函数y=x
2
+x+1的图象是一条抛物线(结论)
例
2
、
已知lg2=m,计算lg0.8
解:(1)
lga
n
=nlga(a>0)——大前提
lg8=lg2
3
————小前提
lg8=3lg2————结论
lg(a/b)=lga-lgb(a>0,b>0)——大前提
lg0.8=lg(8/10)——-小前提
lg0.8=lg(8/10)——结论
例
3
、
如图;在锐角三角形ABC中,AD⊥BC,
BE⊥AC,
D,E是垂足,求证AB的中点M到D,E的距离相等
解:
(1)因为有一个内角是只直角的三角形是直角三角形,——大前提
在△ABC中,AD⊥BC,即∠ADB=90°——小前提
所以△ABD是直角三角形——结论
(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提
因为
DM是直角三角形斜边上的中线,——小前提
所以
DM=
AB——结论
同理
EM=
AB
所以
DM=EM.
1.演绎推理是由一般到特殊的推理;
2.“三段论”是演绎推理的一般模式;包括
(1)大前提——已知的一般原理;
(2)小前提——所研究的特殊情况;
(3)结论——据一般原理,对特殊情况做出的判断.
三段论的基本格式
M—P(M是P)
(大前提)
S—M(S是M)
(小前提)
S—P(S是P)
(结论)
3.三段论推理的依据,用集合的观点来理解:
若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P。
例
1
、
把“函数y=x
2
+x+1的图象是一条抛物线”恢复成完全三段论。
解:二次函数的图象是一条抛物线
(大前提)
函数y=x
2
+x+1是二次函数(小前提)
所以,函数y=x
2
+x+1的图象是一条抛物线(结论)
例
2
、
已知lg2=m,计算lg0.8
解:(1)
lga
n
=nlga(a>0)——大前提
lg8=lg2
3
————小前提
lg8=3lg2————结论
lg(a/b)=lga-lgb(a>0,b>0)——大前提
lg0.8=lg(8/10)——-小前提
lg0.8=lg(8/10)——结论
例
3
、
如图;在锐角三角形ABC中,AD⊥BC,
BE⊥AC,
D,E是垂足,求证AB的中点M到D,E的距离相等
解:
(1)因为有一个内角是只直角的三角形是直角三角形,——大前提
在△ABC中,AD⊥BC,即∠ADB=90°——小前提
所以△ABD是直角三角形——结论
(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提
因为
DM是直角三角形斜边上的中线,——小前提
所以
DM=
AB——结论
同理
EM=
AB
所以
DM=EM.
展开全部
演绎推理法分三个步骤
大前提,小前提,结论
大前提是一般原理(规律),即抽象得出一般性、统一性的成果;小前提是指个别对象,这是从一般到个别的推理,从这个推理,然后得出结论。
你要举例,是不是没看懂概念啊
其实很简单的。举个不怎么文雅的例子
大前提 —— 一般原理 —— 1班都是男生
小前提 —— 个别对象 —— 你也在1班
结论 —— 你也是男的
就这样就行了O(∩_∩)O~
大前提,小前提,结论
大前提是一般原理(规律),即抽象得出一般性、统一性的成果;小前提是指个别对象,这是从一般到个别的推理,从这个推理,然后得出结论。
你要举例,是不是没看懂概念啊
其实很简单的。举个不怎么文雅的例子
大前提 —— 一般原理 —— 1班都是男生
小前提 —— 个别对象 —— 你也在1班
结论 —— 你也是男的
就这样就行了O(∩_∩)O~
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一楼是不是讲得太专业了?其实很简单,举个例子:因为人都要吃饭,又因为我是人,所以我要吃饭。前面两个“因为”是前提(分大前提和小前提),后面“所以”就是结论,由前提推到结论就是演绎推理。只要大前提、小前提、演绎推理规范都是正确的,结论一定是正确的,由面到点,这也是和合情推理最不同的地方(合情推理是由点到面)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询