
设函数f(x)=2x/(x^2+1),g(x)=x^2-3x+a,若对于任意x1∈(0,1)总存在x2∈(0,1)
设函数f(x)=2x/(x^2+1),g(x)=x^2-3x+a,若对于任意x1∈(0,1)总存在x2∈(0,1),使得g(x2)=f(x1)成立,则实数a的取值范围为多...
设函数f(x)=2x/(x^2+1),g(x)=x^2-3x+a,若对于任意x1∈(0,1)总存在x2∈(0,1),使得g(x2)=f(x1)成立,则实数a的取值范围为多少
(详解) 展开
(详解) 展开
1个回答
展开全部
依题意,在区间(0,1)上,f(x)的值域是g(x)的值域的子集。
f(x)=2/(x+1/x),在(0,1)上,x+1/x>2,则0<2/(x+1/x)<1,即f(x)在区间(0,1)上的值域是(0,1)。
g(x)=x^2-3x+a开口向上,对称轴为x=3/2,在区间(0,1)上递减,值域为(a-2,a)。
所以,a-2<=0且a>=1,a的取值范围是:[1,2]。
f(x)=2/(x+1/x),在(0,1)上,x+1/x>2,则0<2/(x+1/x)<1,即f(x)在区间(0,1)上的值域是(0,1)。
g(x)=x^2-3x+a开口向上,对称轴为x=3/2,在区间(0,1)上递减,值域为(a-2,a)。
所以,a-2<=0且a>=1,a的取值范围是:[1,2]。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询