微分定义是什么?
展开全部
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。
如果函数y=f(x)在点x处的改变量△y=f(x0+△x)-f(x0)可以表示为△y=A△x+α(△x),其中A与△x无关,α(△x)是△x的高阶无穷小,则称A△x为函数y=f(x)在x处的微分,记为dy,即dy=A△x,这时,称函数y=f(x)在x处可微。
简介
微分方程随着微积分的发展而发展。微积分的创始人牛顿和莱布尼茨都研究微分方程。微分方程被广泛地用于解决许多与导数有关的问题。在物理中,有许多运动学和动力学问题涉及到变力,如空气阻力作为速度函数的下落运动,许多问题都可以用微分方程来求解。此外,微分方程在化学、工程、经济学和人口统计学方面也有应用。
数学中对微分方程的研究主要集中在几个不同的方面,但大多数都与微分方程的解有关。只有少数几个简单的微分方程可以解析解。然而,即使没有找到解析解,也可以确定解的一些性质。当无法得到解析解时,可通过数值分析和计算机求解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询