什么是“压缩感知”
1个回答
展开全部
压缩感知,又称压缩采样,压缩传感。英文为Compressed Sampling、 Compressive Sening或者是Compressed sensing。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。
经典的采样定理为香农/乃奎斯特采样,即要保证信号的完全恢复,至少要有2倍的信号频率采样。但是这种采样当中,其实信息是冗余的。压缩感知告诉我们,如果知道信号是稀疏的,那么可以用远低于乃奎斯特采样率,一样可以很好的恢复信号。
压缩感知的核心:信号是稀疏的(即其中有K个为非零元素,其他的元素都为0),采样矩阵和稀疏基是不相关的。
相关内容较多,百度知道里面一下介绍不清楚。
视频资料:1.陆吾生教授于2010年在华东师范大学讲过"Compressed Sening and Signal Processing", 讲的是中文,易听懂,有点科普性质。2.Professor Justin Romberg 作为压缩感知理论的创始人之一,2013年在清华大学讲过“Comprssive Sening and Spare Recovery ”, 这个视频要深入些,全英文讲座,需要较好的英文和数学功底。
如果有兴趣深入学习,建议还是认认真真看文献。可以参考 http://dsp.rice.edu/cs 。这里前17篇是压缩感知的综述,看完后就对概念、模型、求解算法、应用有个整体的了解。网页中间的那么多文献是针对压缩感知理论在各个领域的运用。在最后的部分,是网上现有的针对该问题的求解工具箱,大多数是基于Matlab的。只要分析后自己的模型,可以套用工具箱求解,非常方便。
经典的采样定理为香农/乃奎斯特采样,即要保证信号的完全恢复,至少要有2倍的信号频率采样。但是这种采样当中,其实信息是冗余的。压缩感知告诉我们,如果知道信号是稀疏的,那么可以用远低于乃奎斯特采样率,一样可以很好的恢复信号。
压缩感知的核心:信号是稀疏的(即其中有K个为非零元素,其他的元素都为0),采样矩阵和稀疏基是不相关的。
相关内容较多,百度知道里面一下介绍不清楚。
视频资料:1.陆吾生教授于2010年在华东师范大学讲过"Compressed Sening and Signal Processing", 讲的是中文,易听懂,有点科普性质。2.Professor Justin Romberg 作为压缩感知理论的创始人之一,2013年在清华大学讲过“Comprssive Sening and Spare Recovery ”, 这个视频要深入些,全英文讲座,需要较好的英文和数学功底。
如果有兴趣深入学习,建议还是认认真真看文献。可以参考 http://dsp.rice.edu/cs 。这里前17篇是压缩感知的综述,看完后就对概念、模型、求解算法、应用有个整体的了解。网页中间的那么多文献是针对压缩感知理论在各个领域的运用。在最后的部分,是网上现有的针对该问题的求解工具箱,大多数是基于Matlab的。只要分析后自己的模型,可以套用工具箱求解,非常方便。
希卓
2024-10-17 广告
2024-10-17 广告
分布式振动传感是一种基于先进光纤技术的监测方法,它通过沿光纤分布的传感器网络实时捕获和分析振动信号。该技术具有高精度、长距离监测以及优秀的环境适应性等特点,广泛应用于石油天然气管道安全、高铁沿线监控、重要设施保护等领域。北京希卓信息技术有限...
点击进入详情页
本回答由希卓提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询