随机变量X和Y都服从正态分布,则X+Y一定服从正态分布么

 我来答
百度网友c24e60b
2018-12-12 · TA获得超过1.4万个赞
知道答主
回答量:31
采纳率:0%
帮助的人:8459
展开全部

两个随机变量X和Y都服从标准正态分布,但它们的和不一定服从正态分布,即X+Y不一定服从正态分布。

因为X和Y不是相互独立的。倘若X和Y相互独立或者X和Y的联合分布为正态分布,则可以推出X+Y服从正态分布。

推算过程(反例):

标准正太分布曲线图:

扩展资料:

正态分布的一些性质:

(1)如果  且a与b是实数,那么  (参见期望值和方差)。

(2)如果  与  是统计独立的正态随机变量,那么:它们的和也满足正

态分布 它们的差也满足正态分布

U与V两者是相互独立的。(要求X与Y的方差相等)。

(3)如果 和  是独立常态随机变量,那么:它们的积XY服从概率密度函

数为p的分布 其中  是修正贝塞尔函数(modified Bessel function)

它们的比符合柯西分布,满足 

(4)如果 为独立标准常态随机变量,那么  从自由度为n的卡方分布

参考资料:百度百科——正太分布

梦色十年
高粉答主

2019-06-24 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:2967
采纳率:100%
帮助的人:98.2万
展开全部

两个随机变量X和Y都服从标准正态分布,但它们的和不一定服从正态分布,即X+Y不一定服从正态分布。

因为X和Y不是相互独立的。倘若X和Y相互独立或者X和Y的联合分布为正态分布,则可以推出X+Y服从正态分布。

推算过程(反例):

标准正太分布曲线图:

扩展资料:

正态分布第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。服从正态分布的随机变量的概率规律为取 μ邻近的值的概率大 ,而取离μ越远的值的概率越小。

σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。

它的形状是中间高两边低 ,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
柳树梗
2015-07-02
知道答主
回答量:2
采纳率:0%
帮助的人:2.2万
展开全部
不一定,当X与Y独立时,X+Y才一定服从正态分布。

你这个命题成立的条件是(X,Y)是二维正态分布。但是,只有当X和Y都服从正态分布并且相互独立,则X和Y的联合分布才是二维正态分布。

我今天刚好也在纠结这个问题,哈哈~
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
time张士强
2017-08-14 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1902
采纳率:78%
帮助的人:347万
展开全部
不一定的,但是如果X和Y独立,X+Y就服从正态分布,其均值是X和Y均值的和,方差的平方是两个方差平方的和。
不独立的话,函数形状在三维空间就不是那种草帽型扩散的函数
相互独立联合密度里新的指数是 -{(x-u1)^2/o^1+(y-u2)^2/o2^2}
(x,y)在圆心为(u1,u2),双轴比例为 o1,o2 的所有椭圆上获得的指数相等
整个函数被椭圆状的等高线组成
-{(x-u1)^2/o^1+(y-u2)^2/o2^2+2(x-u1)(y-u2)/o1o2}这种情况下,椭圆有旋转,还是二维正太,x,y在二维面里定义域仍不受对方约束,也可以理解成把轴给转了一下.新轴u,v是关於x,y的互相垂直的向量,仍然可以不干涉
如果x和y相关
那麼y取值范围受x约束
比如y必须小於某某x
则定义域受到约束,总合还是1,密度相对聚拢,不知道变成什麽形状
当Y=X确定时,会缩成沿著一个面的1维了
顺带一说,如果X,Y独立同分布,等高线都是圆环,出来的函数是一个漂亮的草帽
只要独立同方差就是圆环等高,位置和期望有关,形状和方差有关
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
墨轩1909
2019-12-21 · TA获得超过5.1万个赞
知道大有可为答主
回答量:4.4万
采纳率:41%
帮助的人:5005万
展开全部
不一定的,但是如果X和Y独立,X+Y就服从正态分布,其均值是X和Y均值的和,方差的平方是两个方差平方的和。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式