推荐于2016-02-13
已知cos(75° + θ)=1/3 求sin(15°-θ)+sin(105° + θ)的值
方法1:
∵ cos(75° + θ)=1/3
∴ sin(75° + θ)=±√(1 – cos²)=±2√2/3 当θ ∈[–75°,15°]∪[105°,195°] 取正
∵ cos(75°+ θ)=cos[90°- (15° - θ)] =sin (15° - θ) =1/3
∴ sin(15°-θ)=1/3
又∵ sin(105° + θ)=sin[30° + (75° + θ)]=sin30°cos(75° + θ) + cos 30°sin (75° + θ)
=0.5cos(75° + θ) + (√3 /2) sin (75° + θ)=(1/2)(1/3) + (√3 /2)(±2√2/3)=1/6±√6/3
∴ sin(15°-θ) + sin(105° + θ) =1/3 + 1/6±√6/3=1/2±√6/3
…….应该限定θ的范围
方法2:
∵ sinα + sinβ =2 sin[(α+β)/2] cos[(α-β)/2]
∴ sin(15°-θ) + sin(105° + θ) =2 sin60°cos(45°+θ) =2(√3 /2) cos(45°+θ) =√3 cos(45°+θ)
∵ cos(75° + θ)=1/3
∴ sin(75° + θ)=±√(1 – cos²)=±2√2/3 当θ ∈[–75°,15°]∪[105°,195°] 取正
∵ cos(α-β) =cosαcosβ + sinαsinβ
∴ cos(45°+θ)=cos[(75° + θ) -30°]=cos(75° + θ)cos30°-sin(75° + θ)sin30°=(1/3)(√3/2) -(±2√2/3)(1/2) =√3/6 ±√2/3
∴ sin(15°-θ) + sin(105° + θ) =√3 cos(45°+θ) =1/2 ±√6/3
sin(105°+θ)=sin(30°+75°+θ)=sin30°cos(75°+θ)+cos30°sin(75°+θ)
=1/2*1/3+√3/2*2√2/3
=1/6+2√6/6
=(1+2√6)/6
所以:sin(15°-θ)+sin(105°+θ)=1/3+(1+2√6)/6=(3+2√6)/6
=1/2+√6/3
这是原题
sin(105°+Θ)=sin(90°+15°+Θ)=cos(15°+Θ)=sin(75°-Θ)
题目给的是cos(75°+Θ),没有给sin(15°+Θ)或者cos(75°-Θ),所以求不了.