遗传算法

 我来答
一袭可爱风1718
2022-07-26 · TA获得超过1.3万个赞
知道大有可为答主
回答量:6726
采纳率:99%
帮助的人:39万
展开全部
根据问题的目标函数构造一个适值函数,对一个由多个解(每个解对应一个染色体)构成的种群进行评估、遗传、选择,经多代繁殖,获得适应值最好的个体作为问题的最优解。

1,产生一个初始种群

2,根据问题的目标函数构造适值函数

3,根据适应值的好坏不断选择和繁殖

4,若干代后得到适应值最好的个体即为最优解

1.种群和种群大小

一般越大越好,但是规模越大运算时间越大,一般设为100~1000

2. 编码方法 (基因表达方法

3. 遗传算子

包括交叉和变异,模拟了每一代中创造后代的繁殖过程。是遗传算法的精髓

交叉:性能在很大程度上取决于交叉运算的性能,交叉率Pc:各代中交叉产生的后与代数与种群中的个体数的比。Pc越高,解空间就越大,越耗时/

变异:Pm:种群中变异基因数在总基因数中的百分比。它控制着新基因导入种群的比例。太低,一些有用的基因就难以进入选择;太高,后代就可能失去从双亲继承下来的良好特性,也就失去了从过去中搜索的能力。

4.选择策略

适者生存,优胜劣汰

5.停止准则

最大迭代数

初始种群的产生:随机产生,具体依赖于编码方法

编码方法 :二进制编码法、浮点编码法、符号编码法。顺序编码,实数编码,整数编码。

适值函数 :根据目标函数设计

遗传运算 : 交叉 :单切点交叉,双切点交叉,均匀交叉,算术交叉

变异 :基本位变异(Simple Mutation):对个体编码串中以变异概率、随机指定的某一位或某几位仅因座上的值做变异运算。

均匀变异(Uniform Mutation):分别用符合某一范围内均匀分布的随机数,以某一较小的概率来替换个体编码串中各个基因座上的原有基因值。(特别适用于在算法的初级运行阶段)

边界变异(Boundary Mutation):随机的取基因座上的两个对应边界基因值之一去替代原有基因值。特别适用于最优点位于或接近于可行解的边界时的一类问题。

非均匀变异:对原有的基因值做一随机扰动,以扰动后的结果作为变异后的新基因值。对每个基因座都以相同的概率进行变异运算之后,相当于整个解向量在解空间中作了一次轻微的变动。

高斯近似变异:进行变异操作时用符号均值为P的平均值,方差为P**2的正态分布的一个随机数来替换原有的基因值。

选择策略 :1.轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。

2.随机竞争选择(Stochastic Tournament):每次按轮盘赌选择一对个体,然后让这两个个体进行竞争,适应度高的被选中,如此反复,直到选满为止。

3.最佳保留选择:首先按轮盘赌选择方法执行遗传算法的选择操作,然后将当前群体中适应度最高的个体结构完整地复制到下一代群体中。

4.无回放随机选择(也叫期望值选择Excepted Value Selection):根据每个个体在下一代群体中的生存期望来进行随机选择运算。方法如下:

(1) 计算群体中每个个体在下一代群体中的生存期望数目N。

(2) 若某一个体被选中参与交叉运算,则它在下一代中的生存期望数目减去0.5,若某一个体未 被选中参与交叉运算,则它在下一代中的生存期望数目减去1.0。

(3) 随着选择过程的进行,若某一个体的生存期望数目小于0时,则该个体就不再有机会被选中。

5.确定式选择:按照一种确定的方式来进行选择操作。具体操作过程如下:

(1) 计算群体中各个个体在下一代群体中的期望生存数目N。

(2) 用N的整数部分确定各个对应个体在下一代群体中的生存数目。

(3) 用N的小数部分对个体进行降序排列,顺序取前M个个体加入到下一代群体中。至此可完全确定出下一代群体中M个个体。

6.无回放余数随机选择:可确保适应度比平均适应度大的一些个体能够被遗传到下一代群体中,因而选择误差比较小。

7.均匀排序:对群体中的所有个体按期适应度大小进行排序,基于这个排序来分配各个个体被选中的概率。

8.最佳保存策略:当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用它来代替掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。

9.随机联赛选择:每次选取几个个体中适应度最高的一个个体遗传到下一代群体中。

10.排挤选择:新生成的子代将代替或排挤相似的旧父代个体,提高群体的多样性。

之前在网上看到的一个比方,觉得很有趣:

{

既然我们把函数曲线理解成一个一个山峰和山谷组成的山脉。那么我们可以设想所得到的每一个解就是一只袋鼠,我们希望它们不断的向着更高处跳去,直到跳到最高的山峰。所以求最大值的过程就转化成一个“袋鼠跳”的过程。

下面介绍介绍“袋鼠跳”的几种方式。

爬山算法:一只袋鼠朝着比现在高的地方跳去。它找到了不远处的最高的山峰。但是这座山不一定是最高峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

模拟退火:袋鼠喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高峰跳去。这就是模拟退火算法。

遗传算法:有很多袋鼠,它们降落到喜玛拉雅山脉的任意地方。这些袋鼠并不知道它们的任务是寻找珠穆朗玛峰。但每过几年,就在一些海拔高度较低的地方射杀一些袋鼠。于是,不断有袋鼠死于海拔较低的地方,而越是在海拔高的袋鼠越是能活得更久,也越有机会生儿育女。就这样经过许多年,这些袋鼠们竟然都不自觉地聚拢到了一个个的山峰上,可是在所有的袋鼠中,只有聚拢到珠穆朗玛峰的袋鼠被带回了美丽的澳洲。

}

(把那些总是爱走下坡路的袋鼠射杀,这就是遗传算法的精粹!)

遗传算法并不保证你能获得问题的最优解,但是使用遗传算法的最大优点在于你不必去了解和操心如何去“找”最优解。(你不必去指导袋鼠向那边跳,跳多远。)而只要简单的“否定”一些表现不好的个体就行了。(把那些总是爱走下坡路的袋鼠射杀,这就是遗传算法的精粹!)

改进与变形

编码方法:
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式