求这个微分方程的通解,请写出过程,谢谢
3个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
解:∵cosydx+(1+e^(-x))sinydy=0
==>dx/(1+e^(-x))+sinydy/cosy=0
==>e^xdx/(1+e^x)+sinydy/cosy=0
==>d(1+e^x)/(1+e^x)-d(cosy)/cosy=0
==>ln(1+e^x)-ln│cosy│=ln│C│ (C是非零常数)
==>(1+e^x)/cosy=C
==>1+e^x=Ccosy
∴此方程的通解是1+e^x=Ccosy。
==>dx/(1+e^(-x))+sinydy/cosy=0
==>e^xdx/(1+e^x)+sinydy/cosy=0
==>d(1+e^x)/(1+e^x)-d(cosy)/cosy=0
==>ln(1+e^x)-ln│cosy│=ln│C│ (C是非零常数)
==>(1+e^x)/cosy=C
==>1+e^x=Ccosy
∴此方程的通解是1+e^x=Ccosy。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:方程两边同时除以cosy[1+e^(-x)],得:
dx/[1+e^(-x)]+sinydy/cosy=dx/[1+1/e^x]-dcosy/cosy=d(1+e^x)/(1+e^x)-ln| cosy|+C1=0
即: ln|cosy|=ln(1+e^x)+ln|C|;
cosy=C(1+e^x)(cosy≠0)。
dx/[1+e^(-x)]+sinydy/cosy=dx/[1+1/e^x]-dcosy/cosy=d(1+e^x)/(1+e^x)-ln| cosy|+C1=0
即: ln|cosy|=ln(1+e^x)+ln|C|;
cosy=C(1+e^x)(cosy≠0)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询