
展开全部
【1】、(2010年宁波市)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程 (千米)与所经过的时间 (分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。
(2)请你求出小明离开学校的路程 (千米)与所经过的时间 (分钟)之间的函数关系;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
【答案】解:(1)15,
(2)由图像可知, 是 的正比例函数
设所求函数的解析式为 ( )
代入(45,4)得:
解得:
∴ 与 的函数关系式 ( )
(3)由图像可知,小聪在 的时段内
是 的一次函数,设函数解析式为 ( )
代入(30,4),(45,0)得:
解得:
∴ ( )
令 ,解得
当 时,
答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。
【2】、.(2010江西)已知直线经过点(1,2)和点(3,0),求这条直线的解析式.
【关键词】一次函数 待定系数法
【答案】解:设这直线的解析式是 ,将这两点的坐标(1,2)和(3,0)代入,得 ,解得
所以,这条直线的解析式为 .
30(2010年四川省眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
【答案】 解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗 尾,由题意得:
………………………………………(1分)
解这个方程,得:
∴
答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分)
(2)由题意得: ……………………………(3分)
解这个不等式,得:
即购买甲种鱼苗应不少于2000尾. ………………………………(4分)
(3)设购买鱼苗的总费用为y,则 (5分)
由题意,有 ………………………(6分)
解得: …………………………………………………………(7分)
在 中
∵ ,∴y随x的增大而减少
∴当 时, .
即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)
【3】、(2010江苏泰州,26,10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).
⑴分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.
⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?
⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?
【答案】⑴①当1≤ ≤5时,设 ,把(1,200)代入,得 ,即 ;②当 时, ,所以当 >5时, ;
⑵当y=200时,20x-60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元;
⑶对于 ,当y=100时,x=2;对于y=20x-60,当y=100时,x=8,所以资金紧张的时间为8-2=6个月.
【4】、(2010江苏泰州,27,12分)如图,二次函数 的图象经过点D ,与x轴交于A、B两点.
⑴求 的值;
⑵如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;
⑶设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)
【答案】⑴ ∵抛物线经过点D( )
∴
∴c=6.
⑵过点D、B点分别作AC的垂线,垂足分别为E、F,设AC与BD交点为M,
∵AC 将四边形ABCD的面积二等分,即:S△ABC=S△ADC ∴DE=BF
又∵∠DME=∠BMF, ∠DEM=∠BFE
∴△DEM≌△BFM
∴DM=BM 即AC平分BD
∵c=6. ∵抛物线为
∴A( )、B( )
∵M是BD的中点 ∴M( )
设AC的解析式为y=kx+b,经过A、M点
解得
直线AC的解析式为 .
⑶存在.设抛物线顶点为N(0,6),在Rt△AQN中,易得AN= ,于是以A点为圆心,AB= 为半径作圆与抛物线在x上方一定有交点Q,连接AQ,再作∠QAB平分线AP交抛物线于P,连接BP、PQ,此时由“边角边”易得△AQP≌△ABP.
【5】、.(2010年浙江省绍兴市)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,
叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与
x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.
(1)求函数y= x+3的坐标三角形的三条边长;
(2)若函数y= x+b(b为常数)的坐标三角形周长为16, 求此三角形面积.
【答案】解:(1) ∵ 直线y= x+3与x轴的交点坐标为(4,0),与y轴交点坐标为(0,3),
∴函数y= x+3的坐标三角形的三条边长分别为3,4,5.
(2) 直线y= x+b与x轴的交点坐标为( ,0),与y轴交点坐标为(0,b),
当b>0时, ,得b =4,此时,坐标三角形面积为 ;
当b<0时, ,得b =-4,此时,坐标三角形面积为 .
综上,当函数y= x+b的坐标三角形周长为16时,面积为 .
【6】、(2010浙江衢州)
小刚上午7:30从家里出发步行上学,途经少年宫时走了 步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.
(1) 小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?
(2) 下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:
① 小刚到家的时间是下午几时?
② 小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.
解:(1) 小刚每分钟走1200÷10=120(步),每步走100÷150= (米),
所以小刚上学的步行速度是120× =80(米/分). ……2分
小刚家和少年宫之间的路程是80×10=800(米). ……1分
少年宫和学校之间的路程是80×(25-10)=1200(米). ……1分
(2) ① (分钟),
所以小刚到家的时间是下午5:00. ……2分
② 小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时 分,此时小刚离家1 100米,所以点B的坐标是(20,1100).
……2分
线段CD表示小刚与同伴玩了30分钟后,回家的这个时间段中离家的路程s(米)与行走时间t(分)之间的函数关系,由路程与时间的关系得 ,
即线段CD所在直线的函数解析式是 . ……2分
(线段CD所在直线的函数解析式也可以通过下面的方法求得:
点C的坐标是(50,1100),点D的坐标是(60,0)
设线段CD所在直线的函数解析式是 ,将点C,D的坐标代入,得
解得
所以线段CD所在直线的函数解析式是 )
【7】、(2010年日照市)一次函数y= x+4分别交x轴、y轴于A、B两点,在x轴上取一点,使△ABC为等腰三角形,则这样的的点C最多有 个.
答案:4 .
【8】、 (2010年安徽中考) 点P(1, )在反比例函数 的图象上,它关于 轴的对称点在一次函数 的图象上,求此反比例函数的解析式。
【答案】解:点P(1,a)关于y轴的对称点是(-1,a),
因为点(-1,a)在一次函数y=2x+4的图象上,
所以a=2×(-1)+4=2
因为点P(1,2)在反比例函数 的图象
所以k=2
所以反比例函数的解析式是
【9】、(2010年安徽省B卷)19.(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线 、线段 分别表示甲、乙两车所行路程 (千米)与时间 (小时)之间的函数关系对应的图象(线段 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:
(1)求乙车所行路程 与时间 的函数关系式;
(2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。
(2)请你求出小明离开学校的路程 (千米)与所经过的时间 (分钟)之间的函数关系;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
【答案】解:(1)15,
(2)由图像可知, 是 的正比例函数
设所求函数的解析式为 ( )
代入(45,4)得:
解得:
∴ 与 的函数关系式 ( )
(3)由图像可知,小聪在 的时段内
是 的一次函数,设函数解析式为 ( )
代入(30,4),(45,0)得:
解得:
∴ ( )
令 ,解得
当 时,
答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。
【2】、.(2010江西)已知直线经过点(1,2)和点(3,0),求这条直线的解析式.
【关键词】一次函数 待定系数法
【答案】解:设这直线的解析式是 ,将这两点的坐标(1,2)和(3,0)代入,得 ,解得
所以,这条直线的解析式为 .
30(2010年四川省眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
【答案】 解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗 尾,由题意得:
………………………………………(1分)
解这个方程,得:
∴
答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分)
(2)由题意得: ……………………………(3分)
解这个不等式,得:
即购买甲种鱼苗应不少于2000尾. ………………………………(4分)
(3)设购买鱼苗的总费用为y,则 (5分)
由题意,有 ………………………(6分)
解得: …………………………………………………………(7分)
在 中
∵ ,∴y随x的增大而减少
∴当 时, .
即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)
【3】、(2010江苏泰州,26,10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).
⑴分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.
⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?
⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?
【答案】⑴①当1≤ ≤5时,设 ,把(1,200)代入,得 ,即 ;②当 时, ,所以当 >5时, ;
⑵当y=200时,20x-60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元;
⑶对于 ,当y=100时,x=2;对于y=20x-60,当y=100时,x=8,所以资金紧张的时间为8-2=6个月.
【4】、(2010江苏泰州,27,12分)如图,二次函数 的图象经过点D ,与x轴交于A、B两点.
⑴求 的值;
⑵如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;
⑶设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)
【答案】⑴ ∵抛物线经过点D( )
∴
∴c=6.
⑵过点D、B点分别作AC的垂线,垂足分别为E、F,设AC与BD交点为M,
∵AC 将四边形ABCD的面积二等分,即:S△ABC=S△ADC ∴DE=BF
又∵∠DME=∠BMF, ∠DEM=∠BFE
∴△DEM≌△BFM
∴DM=BM 即AC平分BD
∵c=6. ∵抛物线为
∴A( )、B( )
∵M是BD的中点 ∴M( )
设AC的解析式为y=kx+b,经过A、M点
解得
直线AC的解析式为 .
⑶存在.设抛物线顶点为N(0,6),在Rt△AQN中,易得AN= ,于是以A点为圆心,AB= 为半径作圆与抛物线在x上方一定有交点Q,连接AQ,再作∠QAB平分线AP交抛物线于P,连接BP、PQ,此时由“边角边”易得△AQP≌△ABP.
【5】、.(2010年浙江省绍兴市)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,
叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与
x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.
(1)求函数y= x+3的坐标三角形的三条边长;
(2)若函数y= x+b(b为常数)的坐标三角形周长为16, 求此三角形面积.
【答案】解:(1) ∵ 直线y= x+3与x轴的交点坐标为(4,0),与y轴交点坐标为(0,3),
∴函数y= x+3的坐标三角形的三条边长分别为3,4,5.
(2) 直线y= x+b与x轴的交点坐标为( ,0),与y轴交点坐标为(0,b),
当b>0时, ,得b =4,此时,坐标三角形面积为 ;
当b<0时, ,得b =-4,此时,坐标三角形面积为 .
综上,当函数y= x+b的坐标三角形周长为16时,面积为 .
【6】、(2010浙江衢州)
小刚上午7:30从家里出发步行上学,途经少年宫时走了 步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.
(1) 小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?
(2) 下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:
① 小刚到家的时间是下午几时?
② 小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.
解:(1) 小刚每分钟走1200÷10=120(步),每步走100÷150= (米),
所以小刚上学的步行速度是120× =80(米/分). ……2分
小刚家和少年宫之间的路程是80×10=800(米). ……1分
少年宫和学校之间的路程是80×(25-10)=1200(米). ……1分
(2) ① (分钟),
所以小刚到家的时间是下午5:00. ……2分
② 小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时 分,此时小刚离家1 100米,所以点B的坐标是(20,1100).
……2分
线段CD表示小刚与同伴玩了30分钟后,回家的这个时间段中离家的路程s(米)与行走时间t(分)之间的函数关系,由路程与时间的关系得 ,
即线段CD所在直线的函数解析式是 . ……2分
(线段CD所在直线的函数解析式也可以通过下面的方法求得:
点C的坐标是(50,1100),点D的坐标是(60,0)
设线段CD所在直线的函数解析式是 ,将点C,D的坐标代入,得
解得
所以线段CD所在直线的函数解析式是 )
【7】、(2010年日照市)一次函数y= x+4分别交x轴、y轴于A、B两点,在x轴上取一点,使△ABC为等腰三角形,则这样的的点C最多有 个.
答案:4 .
【8】、 (2010年安徽中考) 点P(1, )在反比例函数 的图象上,它关于 轴的对称点在一次函数 的图象上,求此反比例函数的解析式。
【答案】解:点P(1,a)关于y轴的对称点是(-1,a),
因为点(-1,a)在一次函数y=2x+4的图象上,
所以a=2×(-1)+4=2
因为点P(1,2)在反比例函数 的图象
所以k=2
所以反比例函数的解析式是
【9】、(2010年安徽省B卷)19.(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线 、线段 分别表示甲、乙两车所行路程 (千米)与时间 (小时)之间的函数关系对应的图象(线段 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:
(1)求乙车所行路程 与时间 的函数关系式;
(2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
追问
能不能再多找几道(最好有解题过程以及图像),如果可以的话麻烦你再找10道(多了也可以)八年级上图形题。谢谢
追答
网站上很多啊、、
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询