高一数学 对数换底公式推导过程 要详细过程
展开全部
不同分母的两个分数不能直接相加,要换成相同的分母后才能相加.同理底不同的对数要相互运算,就需要换成同样的底.这样就产生了换底公式.
推倒一:
设a^b=N…………①
则b=logaN…………②
把②代入①即得对数恒等式:
a^(logaN)=N…………③
把③两边取以m为底的对数得
logaN·logma=logmN
所以
logaN=(logmN)/(logma)
推导2:
设t=log(a)b
则有a^t=b
两边取以e为底的对数
tlna=lnb
t=lnb/lna
即是:log(a)b=lnb/lna
推倒一:
设a^b=N…………①
则b=logaN…………②
把②代入①即得对数恒等式:
a^(logaN)=N…………③
把③两边取以m为底的对数得
logaN·logma=logmN
所以
logaN=(logmN)/(logma)
推导2:
设t=log(a)b
则有a^t=b
两边取以e为底的对数
tlna=lnb
t=lnb/lna
即是:log(a)b=lnb/lna
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询