对勾函数的最小值?

 我来答
语恬随3612
科技发烧友

2022-07-20 · 智能家居/数码/手机/智能家电产品都懂点
知道小有建树答主
回答量:312
采纳率:100%
帮助的人:6.6万
展开全部

对勾函数的最小值求法:

对于f(x)=x+a/x这样的形式(“√a”就是“根号下a”)。当x>0时,有最小值,为f(√a);当x=2√ab[a,b都不为负])。

比如:当x>0是f(x)有最小值,由均值定理得:x+a/x>=2√(x*a/x)=2√a,故f(x)的最小值为2√a。

       

扩展资料:

对勾函数是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(ab>0)的函数。常见a=b=1。因函数图像和耐克商标相似,也被形象称为“耐克函数”或“耐克曲线”。

对勾函数的一般形式是:(x)=ax+b/x(a>0) 不过在高中文科数学中a多半仅为1,b值不定。理科数学变化更为复杂。

定义域为(-∞,0)∪(0,+∞)值域为(-∞,-2√ab]∪[2√ab,+∞)当x>0,有x=根号b/根号a,有最小值是2√ab当x<0,有x=-根号b/根号a,有最大值是:-2√ab

对勾函数的解析式为y=x+a/x(其中a>0),对勾函数的单调性讨论如下:设x1<x2,则f(x1)-f(x2)=x1+a/x1-(x2+a/x2)=(x1-x2)+a(x2-x1)/(x1x2)=[(x1-x2)(x1x2-a)]/(x1x2)。

函数定义

对勾函数是指形如f(x)=ax+b/x(ab>0)的函数.

性质

图像:

对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0~180°)的正弦值与|b|的乘积.

若a>0,b>0, 在第一象限内,其转折点为(√b/a,2√ab

最值

当定义域为(0~∞)时,f(x)=ax+b/x(a>0, b>0)在x=√b/a处取最小值,最小值为2√ab当定义域为(-∞,0)∪(0,+∞)时,该函数无最值,当定义域为(-∞,0)时,(a>0,b>0)在f(x)=ax+b/x, x=-√b/a处取最大值,最大值为-2√ab。

奇偶、单调性

奇偶性

对勾函数是奇函数.

       

单调性

令k=√b/a,那么:增区间:{x|x≤-k}和{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k}

变化趋势:在y轴左边先增后减,在y轴右边先减后增.

渐近线

对勾函数的两条渐近线分别为y轴、y=ax。


面对这个函数 f(x)=x+b/x,我们应该想得更多,需要我们深入探究:

(1)它的单调性与奇偶性有何应用,而值域问题恰好与单调性密切相关,所以命题者首先想到的问题应该与值域有关;

(2)函数与方程之间有密切的联系,所以命题者自然也会想到函数与方程思想的运用;

(3)众所周知,双曲线中存在很多定值问题,所以很容易就想到定值的存在性问题。因此就由特殊引出了一般结论;

(4)继续拓展下去,用所猜想、探索的结果来解决较为复杂的函数最值问题。能否与均值有关系。


       
               
       
               
       
       

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式