不等式证明 设x>0,y>0,证明不等式(x^2+y^2)^(1/2)>(x^3+y^3)^(1/3)

 我来答
京斯年0GZ
2022-06-10 · TA获得超过6207个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74.3万
展开全部
用 分析法:欲证此不等式成立,x>0,y>0 只需证明(x^2+y^2)^3>(x^3+y^3)^2 展开即x^6+y^6+3x^2y^4+3x^4y^2>x^6+y^6+2x^3y^3 只需证明3x^2 y^2(x^2+y^2)>2x^3y^3 只需证明3x^2+3y^2>2xy 只需证明2(x^2+y^2)+(x^2+y^2)>...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式