考研数学等价无穷小精度问题
2022-07-27 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
精确度问题是指:在计算极限时,若作等价无穷小代换,会涉及到无穷小的阶数,如果无穷小的阶数不够,则可能导致计算错误。
1)精确度问题主要出现在分式极限的计算中:如果分子包含加减运算,对分子作等价代换时,用到的无穷小的阶数必须达到分母的阶数,同样,对分母作等价代换时也是如此。
2)对于不是分式的极限计算问题,如果包含加减运算,则相加减的项作等价代换时,也要使其精确度(阶数)一致。
数学等价无穷小精度问题极限:
数学分析的基础概念。它指变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。
极限方法为数学分析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上,然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询