如何证明函数可微
1个回答
展开全部
y = f(x),在x点可微,只要证明下面的极限
lim(Δx→0) [f(x+Δx) - f(x)] / Δx = f'(x)
存在.
例如:[(x^2+2xΔx+(Δx)^2- x^2)] / Δx
=lim(Δx→0) [2xΔx+(Δx)^2)] / Δx
=lim(Δx→0) [2x+Δx] = 2x
众所周知,x^2的微商处处存在,并等于2x.
lim(Δx→0) [f(x+Δx) - f(x)] / Δx = f'(x)
存在.
例如:[(x^2+2xΔx+(Δx)^2- x^2)] / Δx
=lim(Δx→0) [2xΔx+(Δx)^2)] / Δx
=lim(Δx→0) [2x+Δx] = 2x
众所周知,x^2的微商处处存在,并等于2x.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |