函数f(x)在闭区间[a,b]可导,则f‘(x)在(a,b)上必连续

 我来答
机器1718
2022-07-08 · TA获得超过6837个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:161万
展开全部
这里引用同济6版高数上册的证明 证明如下
设函数y=f(x)在点x处可导,即Δx趋于0时Δy/Δx的极限=f(x)存在
由具有极限的函数与无穷小的关系知道 Δy/Δx=f‘(x)+a
其中a为当Δx趋于0时的无穷小 上式两边同乘Δx,得
Δy=f’(x)Δx+aΔx
由此可见 当Δx趋于0时 y也趋于0 这就是说 函数y=f(x)在点x处是连续的
证毕
结论:可导必连续
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式