夹逼准则的题 10
展开全部
夹逼准则就是通过放缩,证明结果成立。
这道题中中间是原式,左边是把原式中分母放大,于是整个式子变小,放缩的地方是把分子的1、2....n都变成n。右边同理,分母缩小,分式变大,放缩的地方是把1、2...n都变成1。
夹逼定理英文原名Sandwich Theorem。也称两边夹定理、夹逼准则、夹挤定理、挟挤定理、三明治定理,是判定极限存在的两个准则之一,是函数极限的定理。
拓展资料:
一.如果数列{Xn},{Yn}及{Zn}满足下列条件:
(1)当n>N0时,其中N0∈N*,有Yn≤Xn≤Zn,
(2){Yn}、{Zn}有相同的极限a,设-∞<a<+∞
则,数列{Xn}的极限存在,且当 n→+∞,limXn =a。
证明:因为limYn=a,limZn=a,所以根据数列极限的定义,对于任意给定的正数ε,存在正整数N1、N2,当n>N1时 ,有〡Yn-a∣﹤ε,当n>N2时,有∣Zn-a∣﹤ε,现在取N=max{No,N1,N2},则当n>N时,∣Yn-a∣<ε、∣Zn-a∣<ε同时成立,且Yn≤Xn≤Zn,即a-ε<Yn<a+ε,a-ε<Zn<a+ε,又因为 a-ε<Yn≤Xn≤Zn<a+ε,即∣Xn-a∣<ε成立。也就是说
limXn=a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询