一元二次方程怎么解

 我来答
内蒙古恒学教育
2022-11-09 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
一元二次方程四中解法。
一、公式法。
二、配方法。
三、直接开平方法。
四、因式分解法。
公式法1先判断△=b_-4ac,若△<0原方程无实根;
2若△=0,原方程有两个相同的解为:X=-b/(2a);
3若△>0,原方程的解为:X=((-b)±√(△))/(2a)。
配方法。先把常数c移到方程右边得:aX_+bX=-c。将二次项系数化为1得:X_+(b/a)X=-c/a,方程两边分别加上(b/a)的一半的平方得X_+(b/a)X+(b/(2a))_=-c/a+(b/(2a))_方程化为:(b+(2a))_=-c/a+(b/(2a))_。
5①、若-c/a+(b/(2a))_<0,原方程无实根;
②、若-c/a+(b/(2a))_=0,原方程有两个相同的解为X=-b/(2a);
③、若-c/a+(b/(2a))_>0,原方程的解为X=(-b)±√((b_-4ac))/(2a)。
清风聊生活
高粉答主

2022-08-07 · 醉心答题,欢迎关注
知道小有建树答主
回答量:3066
采纳率:100%
帮助的人:49.9万
展开全部

一元二次方程有四种解法:直接开平方法;配方法;公式法;因式分解法。解一元二次方程的基本思想方法为通过“降次”将它化为两个一元一次方程。

1、直接开平方法

形如x²=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。如果方程化成x²=p的形式,那么可得x=±√p。如果方程能化成(nx+m)²=p(p≥0)的形式,那么nx+m=±√p,进而得出方程的根。


2、配方法:用配方法解方程ax²+bx+c=0 (a≠0),先将常数c移到方程右边,将二次项系数化为1,方程两边分别加上一次项系数的一半的平方,方程左边成为一个完全平方式。

3、公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a,b,c的值代入求根公式就可得到方程的根。

4、因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。



注意事项

公元前300年左右,古希腊的欧几里得(Euclid)(约前330年~前275年)提出了用一种更抽象的几何方法求解二次方程。古希腊的丢番图(Diophantus)(246~330)在解一元二次方程的过程中,却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。

公元628年,印度的婆罗摩笈多(Brahmagupta)(约598~约660)出版了《婆罗摩修正体系》,得到了一元二次方程

的一个求根公式。


公元820年,阿拉伯的阿尔·花剌子模(al-Khwārizmi)(780~810)出版了《代数学》。

书中讨论到方程的解法,除了给出二次方程的几种特殊解法外,还第一次给出了一元二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。他把方程的未知数叫做“根”,后被译成拉丁文(radix)。其中涉及到六种不同的形式,令a,b,c为正数,如

把二次方程分成不同形式作讨论,是依照丢番图的做法。


法国的韦达(1540~1603)除推出一元方程在复数范围内恒有解外,还给出了根与系数的关系。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式