求证 sin^2α×tanα+cos^2α×cotα+2sinα×cosα=tanα+cotα
4个回答
展开全部
左边=(sinα)^3/cosα+(cosα)^3/sinα+2sinαcosα
=[(sinα)^4+(cosα)^4]/(sinαcosα)+2sinαcosα
=[(sinα)^4+2(sinαcosα)^2+(cosα)^4]/(sinαcosα)
=[(sinα)^2+(cosα)^2]^2/(sinαcosα)
=[(sinα)^2+(cosα)^2]/(sinαcosα)
=sinα/cosα+cosα/sinα
=tanα+cotα
=右边。
=[(sinα)^4+(cosα)^4]/(sinαcosα)+2sinαcosα
=[(sinα)^4+2(sinαcosα)^2+(cosα)^4]/(sinαcosα)
=[(sinα)^2+(cosα)^2]^2/(sinαcosα)
=[(sinα)^2+(cosα)^2]/(sinαcosα)
=sinα/cosα+cosα/sinα
=tanα+cotα
=右边。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin^2α×tanα+cos^2α×cotα+2sinα×cosα
=sin^2α×tanα+cos^2α×cotα+tanα×cos^2α+cotα×sin^2α
=sin^2α×(tanα+cotα)+cos^2α×(cotα+tanα)
=(tanα+cotα)×(sin^2α+cos^2α)
=(tanα+cotα)
=sin^2α×tanα+cos^2α×cotα+tanα×cos^2α+cotα×sin^2α
=sin^2α×(tanα+cotα)+cos^2α×(cotα+tanα)
=(tanα+cotα)×(sin^2α+cos^2α)
=(tanα+cotα)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin^2α×tanα+cos^2α×cotα+2sinα×cosα
=2sinacosaxsina/cosa+(cosacosa-sinasina)xcosa/sina+2sinacosa
=2sin²a+cos3a/sina-sinacosa+2sinacosa
=(sin3a+cos3a)/sina+sinacosa
=(sina+cosa)(sin²a-sinacosa+cos²a)/sina+sinacosa
=(sina+cosa-sin²acosa-sinacos²a)/sina+sinacosa=1+cota-sinacosa-cos²a+sinacosa
=cota+sin²a
=2sinacosaxsina/cosa+(cosacosa-sinasina)xcosa/sina+2sinacosa
=2sin²a+cos3a/sina-sinacosa+2sinacosa
=(sin3a+cos3a)/sina+sinacosa
=(sina+cosa)(sin²a-sinacosa+cos²a)/sina+sinacosa
=(sina+cosa-sin²acosa-sinacos²a)/sina+sinacosa=1+cota-sinacosa-cos²a+sinacosa
=cota+sin²a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询