常微分方程的解法

 我来答
呦呦璐蓂
2023-01-06 · TA获得超过538个赞
知道大有可为答主
回答量:6270
采纳率:100%
帮助的人:93.9万
展开全部

常微分方程的解法:

常微分方程数值解法(numerical methods for ordinary differential equations)计算数学的一个分支。

是解常微分方程各类定解问题的数值方法。现有的解析方法只能用于求解一些特殊类型的定解问题,实用上许多很有价值的常微分方程的解不能用初等函数来表示,常常需要求其数值解。所谓数值解,是指在求解区间内一系列离散点处给出真解的近似值。

这就促成了数值方法的产生与发展。作为数值分析的基础内容,常微分方程数值解法的研究已发展得相当成熟,理论上也颇为完善,各类有实用价值的算法已经建立,并已形成计算机软件。它处理问题的思路与方法常可用于偏微分方程的数值求解。

主要研究以下三类定解问题的数值解法:初值问题、两点边值问题与特征值问题。初值问题的数值解法应用广泛,是常微分方程数值解法的主要内容。

在这方面有突出贡献的学者当推达赫奎斯特(Dahlquist,G.)、巴特赫尔(Butcher,J.C.)及吉尔(Gear,C.W.)等人。两点边值问题及特征值问题的研究相对较为薄弱,其中凯勒尔(Keller,H.B.)的工作影响较大。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式