如何理解函数的导数?

 我来答
wxsunhao

2023-01-08 · 知道合伙人教育行家
wxsunhao
知道合伙人教育行家
采纳数:20073 获赞数:77232
国家级安全专家 省安全专家、职业健康专家 常州市安委会专家 质量、环境、职业健康安全审核员 教授级高级工

向TA提问 私信TA
展开全部

函数的导数是高等数学中的一个重要概念。它的定义是

它的几何意义是函数f(x)在x处的斜率。

百度网友ae12d2f
2023-01-08 · TA获得超过6647个赞
知道小有建树答主
回答量:1011
采纳率:100%
帮助的人:426万
展开全部
 一般地,假设一元函数 y=f(x )在 点x0的某个邻域N(x0,δ)内有定义,当自变量取的增量Δx=x-x0时,函数相应增量为 △y=f(x0+△x)-f(x0),若函数增量△y与自变量增量△x之比当△x→0时的极限存在且有限,就说函数f(x)在x0点可导,并将这个极限称之为f在x0点的导数或变化率。
  “点动成线”:若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f(x)' 或y',称之为f的导函数,简称为导数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式