{An}为等比数列,且A1A9=64,A3+A7=20,求A11的值
展开全部
An=A1*q^(n-1)
所以A1A9=64可化为A1*A1*q^8=64
A3+A7=20可化为A1*q^2+A1*q^6=20
对每一个等式代换,可得A1=8/q^4将其代入第二式 (1)
可得8/q^2+8*q^2=20
设q^2=x
8/x+8x=20
8x^2-20x+8=0解得x=2或x=1/2
代入,q=正负根号2,或q=(正负根号2)/2
将q代入(1)可解出A1=2 或A1=32
所以A11=A1*q^10=2*根号2^10=64
或A11=A1*q^10=32*[(根号2)/2)]^10=1
所以A1A9=64可化为A1*A1*q^8=64
A3+A7=20可化为A1*q^2+A1*q^6=20
对每一个等式代换,可得A1=8/q^4将其代入第二式 (1)
可得8/q^2+8*q^2=20
设q^2=x
8/x+8x=20
8x^2-20x+8=0解得x=2或x=1/2
代入,q=正负根号2,或q=(正负根号2)/2
将q代入(1)可解出A1=2 或A1=32
所以A11=A1*q^10=2*根号2^10=64
或A11=A1*q^10=32*[(根号2)/2)]^10=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询