∫x2tanxdx的定积分怎么求
展开全部
原式等于∫(0-->1)tanxd(x^3/3)=x^3tanx/3[0-->1]-1/3*∫(0-->1)[x^3/1+x^2]dx
=1/3-1/12*∫(0-->1) d(x^4)/1+x^2=1/3-1/12*∫(0-->1)2tdt/1+t(令t=x^2)
所以结果是1/3-(1-ln2)/6
=1/3-1/12*∫(0-->1) d(x^4)/1+x^2=1/3-1/12*∫(0-->1)2tdt/1+t(令t=x^2)
所以结果是1/3-(1-ln2)/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询