随机变量的方差代表它的离散程度和取值的可重复程度。方差越大说明随机变量取值的可重复程度越差,也就是说单个值的“可信度”越低。
反之,方差越小说明随机变量取值的可重复程度越好,也就是说单个值的“可信度”越高。极端地说,如果方差为零,说明该随机变量根本是一个“常数”,取到一个值就足以代表所有取值。
在实验数据处理中(例如,Genie 2000软件),测量(计算)的每一量(随机变量)一般都给出测量值及其不确定度。这一不确定度一般就是随机变量的标准方差。根据这两个值就可以对随机变量的值给出如下的估计,即以某一概率(依赖于w)落在如下的区间内。
扩展资料
举例:
已知某零件的真实长度为a,现用甲、乙两台仪器各测量10次,将测量结果X用坐标上的点表示如图:
乙仪器测量结果:全是a
两台仪器的测量结果的均值都是 a 。但是用上述结果评价一下两台仪器的优劣,很明显,我们会认为乙仪器的性能更好,因为乙仪器的测量结果集中在均值附近。
由此可见,研究随机变量与其均值的偏离程度是十分必要的。那么,用怎样的量去度量这个偏离程度呢?容易看到E[|X-E[X]|]能度量随机变量与其均值E(X)的偏离程度。但由于上式带有绝对值,运算不方便,通常用量E[(X-E[X])2] 这一数字特征就是方差。
参考资料来源:百度百科-方差
x1 x2 ..................... xn
p1 p2 .................... pn
平均值:Eξ = Σ(1->n) xi pi
方 差:Dξ = Σ(1->n) (xi)² pi - (Eξ)²
本题:0 π/2 π
1/4 1/2 1/4
Eξ = 0×(1/4)+(π/2)×(1/2)+π×(1/4)
= π/4+π/4=π/2
Dξ = 0²×(1/4)+(π/2)²×(1/2)+π²×(1/4) - (π/2)²
= π²/8+π²/4-π²/4
= π²/8