对于力的分解有几种方法 5
展开全部
正交分解就是把一个矢量分解成两个互相垂直的矢量
是将一个力沿着互相垂直的方向(x轴、y轴)进行分解的方法
从力的矢量性来看,是力F的分矢量;从力的计算来看,的方向可以用正负号来表示,分量为正值表示分矢量的方向跟规定的正方向相同,分量为负值表示分矢量的方向跟规定的正方向相反.这样,就可以把力的矢量运算转变成代数运算.所以,力的正交分解法是处理力的合成分解问题的最重要的方法,是一种解析法.特别是多力作用于同一物体时,计算起来,非常方便.
利用正交分解法求合力可分以下四步:
(1)以力的作用点为原点,建立合适的直角坐标系;
(2)将各力进行正交分解;
(3)分别求出两个坐标轴上各分量的代数和
(4)正交合成,求出合力的大小和方向.
是将一个力沿着互相垂直的方向(x轴、y轴)进行分解的方法
从力的矢量性来看,是力F的分矢量;从力的计算来看,的方向可以用正负号来表示,分量为正值表示分矢量的方向跟规定的正方向相同,分量为负值表示分矢量的方向跟规定的正方向相反.这样,就可以把力的矢量运算转变成代数运算.所以,力的正交分解法是处理力的合成分解问题的最重要的方法,是一种解析法.特别是多力作用于同一物体时,计算起来,非常方便.
利用正交分解法求合力可分以下四步:
(1)以力的作用点为原点,建立合适的直角坐标系;
(2)将各力进行正交分解;
(3)分别求出两个坐标轴上各分量的代数和
(4)正交合成,求出合力的大小和方向.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐于2017-10-10 · 知道合伙人教育行家
关注
展开全部
力的分解是力的合成的逆运算,同样遵循平行四边形定则:把一个已知力作为平行四边形的对角线,那么与已知力共点的平行四边形的两条邻边就表示已知力的两个分力。然而,如果没有其他限制,对于同一条对角线,可以作出无数个不同的平行四边形。
为此,在分解某个力时,常可采用以下两种方式:
1.按照力产生的实际效果进行分解——先根据力的实际作用效果确定分力的方向,再根据平行四边形定则求出分力的大小。
2.根据“正交分解法”进行分解——先合理选定直角坐标系,再将已知力投影到坐标轴上求出它的两个分量。
关于第2种分解方法,这里我们重点讲一下按实际效果分解力的几类典型问题:放在水平面上的物体所受斜向上拉力的分解 将物体放在弹簧台秤上,注意弹簧台秤的示数,然后作用一个水平拉力,再使拉力的方向从水平方向缓慢地向上偏转,台秤示数逐渐变小,说明拉力除有水平向前拉物体的效果外,还有竖直向上提物体的效果。所以,可将斜向上的拉力沿水平向前和竖直向上两个方向分解。斜面上物体重力的分解所示,在斜面上铺上一层海绵,放上一个圆柱形重物,可以观察到重物下滚的同时,还能使海绵形变有压力作用,从而说明为什么将重力分解成F1和F2这样两个分力。
为此,在分解某个力时,常可采用以下两种方式:
1.按照力产生的实际效果进行分解——先根据力的实际作用效果确定分力的方向,再根据平行四边形定则求出分力的大小。
2.根据“正交分解法”进行分解——先合理选定直角坐标系,再将已知力投影到坐标轴上求出它的两个分量。
关于第2种分解方法,这里我们重点讲一下按实际效果分解力的几类典型问题:放在水平面上的物体所受斜向上拉力的分解 将物体放在弹簧台秤上,注意弹簧台秤的示数,然后作用一个水平拉力,再使拉力的方向从水平方向缓慢地向上偏转,台秤示数逐渐变小,说明拉力除有水平向前拉物体的效果外,还有竖直向上提物体的效果。所以,可将斜向上的拉力沿水平向前和竖直向上两个方向分解。斜面上物体重力的分解所示,在斜面上铺上一层海绵,放上一个圆柱形重物,可以观察到重物下滚的同时,还能使海绵形变有压力作用,从而说明为什么将重力分解成F1和F2这样两个分力。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询