展开全部
(6)
y=x^(2a)+a^(2x)+a^(2a)
y
=2ax^(2a-1)- (lna).a^(2x).(2x)'
=2ax^(2a-1)- (lna).a^(2x).(2)
=2ax^(2a-1)- 2(lna).a^(2x)
(8)
y=xarcsin(x/2) + √(4-x^2)
y'
=x[arcsin(x/2)]'+arcsin(x/2).(x)' + (1/2)(4-x^2)^(-1/2) .(4-x^2)'
=x[1/√(1-(x/2)^2)]. (x/2)'+arcsin(x/2).(1) + (1/2)(4-x^2)^(-1/2) .(-2x)
=x[1/√(1-(x/2)^2)]. (1/2)+arcsin(x/2).(1) + (1/2)(4-x^2)^(-1/2) .(-2x)
=x/√(4-x^2)]+arcsin(x/2) - x/√(4-x^2)
=arcsin(x/2)
y=x^(2a)+a^(2x)+a^(2a)
y
=2ax^(2a-1)- (lna).a^(2x).(2x)'
=2ax^(2a-1)- (lna).a^(2x).(2)
=2ax^(2a-1)- 2(lna).a^(2x)
(8)
y=xarcsin(x/2) + √(4-x^2)
y'
=x[arcsin(x/2)]'+arcsin(x/2).(x)' + (1/2)(4-x^2)^(-1/2) .(4-x^2)'
=x[1/√(1-(x/2)^2)]. (x/2)'+arcsin(x/2).(1) + (1/2)(4-x^2)^(-1/2) .(-2x)
=x[1/√(1-(x/2)^2)]. (1/2)+arcsin(x/2).(1) + (1/2)(4-x^2)^(-1/2) .(-2x)
=x/√(4-x^2)]+arcsin(x/2) - x/√(4-x^2)
=arcsin(x/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=x^(2a)+a^(2x)+a^(2a)
y'=2ax^(2a-1) +2a^(2x)lna
y=xarcsin(x/2)+根号(4-x^2)
y'=arcsin(x/2)+x/根号(1-(x/2)^2) * 1/2 +1/2 * 1/根号(4-x^2) * (-2x)
=arcsin(x/2) +x/(4-x^2) -x/根号(4-x^2)=arcsin(x/2)
y'=2ax^(2a-1) +2a^(2x)lna
y=xarcsin(x/2)+根号(4-x^2)
y'=arcsin(x/2)+x/根号(1-(x/2)^2) * 1/2 +1/2 * 1/根号(4-x^2) * (-2x)
=arcsin(x/2) +x/(4-x^2) -x/根号(4-x^2)=arcsin(x/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(6) y = x^(2a) + a^(2x) + a^(2a)
y' = 2ax^(2a-1) + 2a^(2x)lna
(8) y = xarcsin(x/2) + √(4-x^2)
y' = arcsin(x/2) + (1/2)x/√(1-x^2/4) - x/√(4-x^2)
= arcsin(x/2) + x/√(4-x^2) - x/√(4-x^2)= arcsin(x/2)
y' = 2ax^(2a-1) + 2a^(2x)lna
(8) y = xarcsin(x/2) + √(4-x^2)
y' = arcsin(x/2) + (1/2)x/√(1-x^2/4) - x/√(4-x^2)
= arcsin(x/2) + x/√(4-x^2) - x/√(4-x^2)= arcsin(x/2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询