如图 p为三角形abc内任意一点,求证:PA+PB+PC﹥2/1(AB+BC+AC)

 我来答
wanzizALDX
高粉答主

2019-07-14 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1136
采纳率:100%
帮助的人:27.1万
展开全部

PA+PB>AB, PA+PC>AC, PB+PC>BC

三式相加2(PA+PB+PC)>AB+BC+AC

所以PA+PB+PC>(AB+BC+AC)/2

三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。

常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)。

按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

扩展资料:

几何证明方法:

反证法

反证法是一种古老的证明方法,其思想为:欲证明某命题是假命题,则反过来假设该命题为真。在这种情况下,若能通过正确有效的推理导致逻辑上的矛盾,又或者与某个事实或公理相悖,则能证明原来的命题为假。

无矛盾律和排中律是反证法的逻辑基础。反证法的好处是在反过来假设该命题为真的同时,等于多了一个已知条件,这样对题目的证明常有帮助。

数学归纳法

数学归纳法是一种证明可数无穷个命题的技巧。欲证明以自然数n编号的一串命题,先证明命题1成立,并证明当命题p(n)成立时命题p(n+1)也成立,则对所有的命题都成立。

在皮亚诺公理系统中,自然数集合的公理化定义就包括了数学归纳法。数学归纳法有不少变体,比如从0以外的自然数开始归纳,证明当命题对小于等于n的自然数成立时命题p(n+1)也成立,反向归纳法,递降归纳法等等。

广义上的数学归纳法也可以用于证明一般良基结构,例如集合论中的树。另外,超限归纳法提供了一种处理不可数无穷个命题的技巧,是数学归纳法的推广。

参考资料来源:百度百科-几何证明

JK影评
2019-07-14 · TA获得超过1977个赞
知道答主
回答量:5
采纳率:0%
帮助的人:709
展开全部

在△APB中,ABPA AB>PB(大角对大边,大边对大角)

所以:ABPA+PB

同理:BCPB+PC

CAPA+PC

所以以上相加:(AB+BC+CA)

扩展资料:

三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。

常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫作三角形。平面上三条直线或球面上三条弧线所围成的图形,三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。

由三条线段首尾顺次相连,得到的封闭几何图形叫作三角形。三角形是几何图案的基本图形。

中线

连接三角形的一个顶点及其对边中点的线段叫做三角形的中线(median)。

从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段叫做三角形的高(altitude)。

角平分线

三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线(bisector of angle)。

中位线

三角形的三边中任意两边中点的连线叫中位线。它平行于第三边且等于第三边的一半。

参考资料:百度百科-三角形

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
点点外婆
2015-09-19 · 知道合伙人教育行家
点点外婆
知道合伙人教育行家
采纳数:3050 获赞数:15980
65年毕业于上海师范学院数学系,留校。后调到宁波,在三中等校工作32年,历任教导副主任,教学副校长等职

向TA提问 私信TA
展开全部
PA+PB>AB, PA+PC>AC, PB+PC>BC
三式相加2(PA+PB+PC)>AB+BC+AC
所以PA+PB+PC>(AB+BC+AC)/2
注意:你题目中的2/1(AB+BC+AC)表达是错误的!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
bd水人
2015-09-19 · TA获得超过201个赞
知道小有建树答主
回答量:190
采纳率:100%
帮助的人:61.7万
展开全部
这还不容易,看成3个三角形,然后利用两边之和大于第三边
更多追问追答
追问
求过程
追答
AP+BP>AB,剩下的自己写去吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式